10. of Printed Pages : 3

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

00896

Term-End Examination

June, 2014

MMT-002 : LINEAR ALGEBRA

Time : $1\frac{1}{2}$ hours

Maximum Marks : 25

(Weightage : 70%)

Note : Question no. 5 is **compulsory**. Answer any **three** questions from 1 to 4. Calculators are **not** allowed.

1. (a) Let
$$T : \mathbf{R}^3 \to \mathbf{R}^2 : T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + 2y + z \\ x - y - 2z \end{bmatrix}.$$

Find the matrix of T with respect to the bases $\begin{bmatrix} 1\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1\end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1\end{bmatrix}$ and $\begin{bmatrix} 1\\0\\1\\1\end{bmatrix}, \begin{bmatrix} 1\\1\\1\end{bmatrix}$ of \mathbf{R}^3

and \mathbf{R}^2 , respectively.

(b) Prove that given an $m \times n$ matrix M, then $\alpha \in \mathbf{R}^n$ is a least squares solution of Mx = yif and only if $M^* M\alpha = M^*y$. 3

1

MMT-002

2

MMT-002

2. (a) Write all possible Jordan canonical forms for a 4×4 matrix whose minimal polynomial is (x - 1) (x - 2). $2\frac{1}{2}$

(b) Write the spectral decomposition of

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$
 $2\frac{1}{2}$

2

3

3. (a) Check whether or not
$$\begin{bmatrix} 2 & -3 & 3 \\ 5 & 5 & 2 \\ 0 & 3 & 0 \end{bmatrix}$$
 is unitarily diagonalisable.

(b) Consider the predator-prey matrix of two populations given by $\begin{pmatrix} 0.38 & 0.24 \\ & & \\ -0.36 & 1.22 \end{pmatrix}$. Check whether the populations perish with

Check whether the populations perish with time or not.

4. Construct the SVD of
$$\begin{bmatrix} 0 & -3 & -1 \\ 0 & 1 & -3 \end{bmatrix}$$
. 5

MMT-002

2

- 5. Which of the following statements are true, and which are not? Give reasons for your answers.
- 10
- (i) Eigenvectors corresponding to the same eigenvalues of a matrix are always linearly dependent.
- (ii) If all the eigenvalues of a matrix A are zero, then A is similar to the zero matrix.
- (iii) The sum of two normal matrices of order n is normal.
- (iv) If A is a matrix with determinant 1, then A is a unitary matrix.
- (v) If the characteristic polynomial of a matrix is $(x - 3)^2 (x - 2)^2$, then its minimal polynomial can be $(x - 3)^2$.

MMT-002