ง. of Printed Pages : 3
MMTT-002

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

प0096 Term-End Examination
 June, 2014

MMT-002 : LINEAR ALGEBRA

Time: $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage: 70\%)
Note: Question no. 5 is compulsory. Answer any three questions from 1 to 4. Calculators are not allowed.

1. (a) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}: T\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x+2 y+z \\ x-y-2 z\end{array}\right]$.

Find the matrix of T with respect to the bases $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ and $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ of \mathbf{R}^{3} and \mathbf{R}^{2}, respectively.
(b) Prove that given an $\mathrm{m} \times \mathrm{n}$ matrix M , then $\alpha \in \mathbf{R}^{\mathbf{n}}$ is a least squares solution of $\mathbf{M x}=\mathbf{y}$ if and only if $\mathrm{M}^{*} \mathrm{M} \alpha=\mathrm{M}^{*} \mathrm{y}$.
2. (a) Write all possible Jordan canonical forms for a 4×4 matrix whose minimal polynomial is $(\mathrm{x}-1)(\mathrm{x}-2)$. $2 \frac{1}{2}$
(b) Write the spectral decomposition of

$$
\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 1 / 2 & -1 / 2 \\
0 & -1 / 2 & 1 / 2
\end{array}\right] . \quad 2 \frac{1}{2}
$$

3. (a) Check whether or not $\left[\begin{array}{ccc}2 & -3 & 3 \\ 5 & 5 & 2 \\ 0 & 3 & 0\end{array}\right]$ is unitarily diagonalisable.
(b) Consider the predator-prey matrix of two populations given by $\left(\begin{array}{cc}0.38 & 0.24 \\ -0.36 & 1.22\end{array}\right)$. Check whether the populations perish with time or not.
4. Construct the SVD of $\left[\begin{array}{ccc}0 & -3 & -1 \\ 0 & 1 & -3\end{array}\right]$.
5. Which of the following statements are true, and which are not? Give reasons for your answers.
(i) Eigenvectors corresponding to the same eigenvalues of a matrix are always linearly dependent.
(ii) If all the eigenvalues of a matrix A are zero, then A is similar to the zero matrix.
(iii) The sum of two normal matrices of order n is normal.
(iv) If A is a matrix with determinant 1, then A is a unitary matrix.
(v) If the characteristic polynomial of a matrix is $(x-3)^{2}(x-2)^{2}$, then its minimal polynomial can be $(x-3)^{2}$.
