No. of Printed Pages : 8
MTE-13

BACHELOR'S DEGREE PROGRAMME (BDP)

D1182

Term-End Examination
June, 2014

ELECTIVE COURSE : MATHEMATICS
 MTE-13 : DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 1 is compulsory. Answer any four questions from question numbers 2 to 7 . Calculators are not allowed.

1. Which of the following statements are true and which are false? Justify your answer.
(i) For any graph G, $\Delta(\mathrm{G})=\chi(\mathrm{G})$.
(ii) $\mathrm{p} \oplus \mathrm{q} \equiv \sim \mathrm{p} \wedge \mathrm{q}$
(iii) The coefficient of x^{10} in $\left(1+\mathrm{x}^{5}+\mathrm{x}^{10}+\ldots\right)^{3}$ is 10.
(iv) $\mathrm{K}_{4,4}$ is non-planar.
(v) $a_{n}=2^{n} a_{n-1}+3 a_{n-3}$ is a homogeneous recurrence with constant coefficients.
2. (a) Let $f: \mathbb{B}^{2} \rightarrow \mathbb{B}$ be a function defined by $\mathrm{f}(0,1)=1, \mathrm{f}(0,0)=0, \mathrm{f}(1,0)=1$ and $f(1,1)=0$. Find the Boolean expression in DNF specifying f.
(b) The number of bacteria in a colony triple every hour. Set up a recurrence for number of bacteria after n hours have elapsed.
(c) Use Fleury's algorithm to find an Eulerian circuit in the following graph, specifying the bridges you have used.

3. (a) Find the number of integer solutions of the equation

$$
\begin{aligned}
& \text { equation } \\
& x_{1}+x_{2}+x_{3}+x_{4}=7 \text { when } x_{i} \geq 0 \forall 1 \leq i \leq 4
\end{aligned}
$$

(b) Find the solution of the recurrence relation

$$
a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}
$$

with the initial conditions $a_{0}=2, a_{1}=5$ and

$$
a_{2}=15
$$

(c) Draw three spanning trees of the following graph which are non-isomorphic to each other :

4. (a) Test the validity of the following argument using a truth table :
"If there is a football match, then travelling is difficult. If they arrived on time, then travelling was not difficult. They arrived on time. Therefore, there was no football match."
(b) Find the generating function for the sequence of the number of partitions of n into distinct primes.
(c) How many positive integers not exceeding 2000 are divisible by 7 or 11 ?
5. (a) Explain each of the following with an example :
(i) Modus ponens
(ii) Disjunctive syllogism
(b) If a pair of dice is rolled, what is the probability that the sum on the two dice is even?
(c) Find the chromatic number of the following graph :

6. (a) Find the Boolean expression corresponding to the following logic circuit:

(b) Draw 8 non-isomorphic trees on 7 vertices.
(c) Using generating functions, find a solution of the recurrence relation $a_{n}=2 a_{n-1}+3 a_{n-2}$ with $a_{0}=a_{1}=1, n \geq 2$.
7. (a) Use mathematical induction to prove that

$$
(\mathrm{n}+1)^{2}<2 \mathrm{n}^{2} \text { for } \mathrm{n} \geq 3
$$

(b) How many partitions of $2 \mathrm{n}+1$ are there which have only the numbers 1 and/or 2 as parts?
(c) Four persons were found in a queue, independently on 25 occasions. Show that at least on two occasions they must have been in the queue in the same order.
(d) Solve the recurrence $a_{n+1}^{2}=4 a_{n}^{2}$, where $a_{n}>0$ and $a_{0}=2$.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा
जून, 2014

> ऐच्छिक पाठ्यक्रम : गणित
> एम.टी.ई.-13 : विविक्त गणित

समय : 2 घण्टे अधिकतम अंक: 50
(कुल का : 70%)
नोट : प्रश्न सं. 1 करना अनिवार्य है / प्रश्न संख्या 2 से 7 में से कोई चार प्रश्न कीजिए । कैलकुलेटरों का प्रयोग करने की अनुमति नहीं है ।

1. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य हैं ? अपने उत्तर की पुष्टि कीजिए ।
(i) किसी ग्राफ G के लिए, $\Delta(\mathrm{G})=\chi(\mathrm{G})$.
(ii) $\mathrm{p} \oplus \mathrm{q} \equiv \sim \mathrm{p} \wedge \mathrm{q}$
(iii) $\left(1+\mathrm{x}^{5}+\mathrm{x}^{10}+\ldots\right)^{3}$ में x^{10} का गुणांक 10 है।
(iv) $\mathrm{K}_{4,4}$ असमतलीय है ।
(v) $a_{n}=2^{n} a_{n-1}+3 a_{n-3}$ अचर गुणांकों वाली समघात पुनरावृत्ति है ।
2. (क) मान लीजिए $\mathrm{f}: \mathbb{B}^{2} \rightarrow \mathbb{B}, \mathrm{f}(0,1)=1, \mathrm{f}(0,0)=0$, $\mathrm{f}(1,0)=1$ और $\mathrm{f}(1,1)=0$ द्वारा परिभाषित फलन है । f को विनिर्दिष्ट करते हुए DNF में बूलीय व्यंजक ज्ञात कीजिए।
(ख) मान लीजिए एक कॉलोनी में बैक्टीरिया प्रत्येक घंटे में तिगुने हो जाते हैं। n घंटे हो जाने के बाद बैक्टीरिया की संख्या के लिए पुनरावृत्ति संबंध स्थापित कीजिए।
(ग) निम्नलिखित ग्राफ में ऑयलरी परिपथ ज्ञात करने के लिए फ्लूरी ऐल्गोरिथ्म विधि का प्रयोग कीजिए। आपने जिन कोरों का प्रयोग किया है वह भी बताइए।

3. (क) समीकरण
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=7$ जब $\mathrm{x}_{\mathrm{i}} \geq 0 \forall 1 \leq \mathrm{i} \leq 4$
के पूर्णांक हलों की संख्या ज्ञात कीजिए ।
(ख) प्रारंभिक प्रतिबंधों $\mathrm{a}_{0}=2, \mathrm{a}_{1}=5$ और $\mathrm{a}_{2}=15$ वाले पुनरावृत्ति संबंध $a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}$ का हल ज्ञात कीजिए।
(ग) निम्नलिखित ग्राफ के ऐसे तीन जनक वृक्ष बनाइए जो परस्पर अतुल्याकारी हों :

4. (क) सत्य सारणी द्वारा जाँच कीजिए कि निम्नलिखित तर्क मान्य है या नहीं :
"यदि फुटबाल मैच होता है, तो यात्रा करना कठिन है । यदि वे समय पर पहुँचे, तो यात्रा में कठिनाई नहीं हुई । वे समय पर पहुँचे । अतः फुटबाल मैच नहीं था ।"
(ख) अलग-अलग अभाज्य संख्याओं में n के विभाजनों की संख्या का अनुक्रम ज्ञात करने के लिए जनक फलन ज्ञात कीजिए।
(ग) 2000 तक कितने धनात्मक पूर्णांक 7 या 11 से विभाजित हैं।
5. (क) निम्नलिखित प्रत्येक को एक उदाहरण से स्पष्ट कीजिए : 3
(i) विधायक हेतु फलनानुमान
(ii) वियोजित तर्क (न्यायवाक्य)
(ख) पाँसे का एक युग्म फेंका जाता है । इसकी क्या प्रायिकता है कि दोनों पाँसों का योगफल सम होगा ?3
(ग) निम्नलिखित ग्राफ की वर्णिक संख्या ज्ञात कीजिए : 4

6. (क) निम्नलिखित तर्क परिपथ के संगत बूलीय व्यंजक ज्ञात कीजिए :

(ख) 7 शीर्षों पर 8 अतुल्याकारी वृक्ष बनाइए ।
(ग) जनक फलनों द्वारा पुनरावृत्ति संबंध

$$
a_{n}=2 a_{n-1}+3 a_{n-2}, a_{0}=a_{1}=1, n \geq 2
$$

का हल ज्ञात कीजिए ।
7. (क) गणितीय आगमन द्वारा सिद्ध कीजिए कि

$$
\mathrm{n} \geq 3 \text { के लिए }(\mathrm{n}+1)^{2}<2 \mathrm{n}^{2} .
$$

(ख) $2 \mathrm{n}+1$ के कितने विभाजन हैं जिनमें हिस्से के रूप में केवल संख्याएँ 1 और/या 2 ही होती हैं ।
(ग) 25 अवसरों पर पंक्ति में चार व्यक्ति ऐसे पाए गए जिनको पंक्ति में एक अवसर पर खड़े होने का क्रम दूसरे अवसर के क्रम को प्रभावित नहीं करता । दिखाइए कि कम-से-कम दो अवसरों पर उनका पंक्ति में खड़े होने का क्रम एक ही होगा ।
(घ) निम्नलिखित पुनरावृत्ति को हल कीजिए :

$$
\mathrm{a}_{\mathrm{n}+1}^{2}=4 \mathrm{a}_{\mathrm{n}}^{2} \text {, जहाँ } \mathrm{a}_{\mathrm{n}}>0 \text { और } \mathrm{a}_{0}=2
$$

