BACHELOR'S DEGREE PROGRAMME

Term-End Examination
June, 2014

ELECTIVE COURSE : MATHEMATICS
 MTE-11 : PROBABILITY AND STATISTICS

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 7 is compulsory. Answer any four questions from questions no. 1 to 6. Calculators are not allowed.

1. (a) If R and S are the range and standard deviation for a set of n observations on a variable X, show that $S \leq R$.
(b) Two unbiased dice are thrown. Let
A_{1} : Odd number on the first die
A_{2} : Odd number on the second die
A_{3} : Odd sum of the numbers on first and second die.

Comment on the independence of $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3}.
(c) A random sample of size n is drawn from a uniform population over $\left[\theta-\frac{1}{2}, \theta+\frac{1}{2}\right]$. Obtain maximum likelihood estimator of θ. Does a unique estimator exist ? Give reasons.
2. (a) Let X be a random variable having uniform density over (0, 1). Find
(i) $\mathrm{E}(\sqrt{\mathrm{x}})$,
(ii) pdf of $y=\sqrt{x}$,
(iii) $E(y)$ and
(iv) check whether $E(y)=E(\sqrt{x})$ or not.
(b) Develop a test for testing
$H_{0}: f(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} \mathrm{x}^{2}},-\infty<\mathrm{x}<\infty$ against
$H_{1}: f(x)=\frac{1}{2} \exp (-|x|),-\infty<x<\infty$
based on a single observation drawn from $f(\mathbf{x})$. Obtain expression for size and power of the test.
3. (a) The random vector (X, Y) has the joint density function given by

$$
f(x, y)= \begin{cases}\frac{1}{\pi}, & x^{2}+y^{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Then find the marginal probability density function of X and Y. Show that $\operatorname{cov}(X, Y)=0$ but X and Y are not independent.
(b) State Bayes theorem. There are three bags containing 2 white balls, 1 white and 1 black ball, and 2 black balls respectively. A bag is selected randomly and a ball is drawn. It is found to be white. What is the probability that remaining ball in the selected bag is white?
4. (a) The first three moments about the origin are given by $m_{1}^{\prime}=\frac{n+1}{2}$, $\mathrm{m}_{2}^{\prime}=\frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$ and $\mathrm{m}_{3}^{\prime}=\frac{\mathrm{n}(\mathrm{n}+1)^{2}}{4}$.

Examine the skewness of the data.
(b) A taxi cab company has two types of cabs A and B. The number of cabs of type A and B are 12 and 8 respectively. If 5 of these taxi cabs are in the workshop for repairs and the time needed for repairing each of the types is same, what is the probability that
(i) 3 of them are of type A and 2 of them are type B ?
(ii) at least 3 of them are of type A ?
(iii) all 5 are of same type?
5. (a) Let X be a random variable with pdf

$$
f(x)=\theta e^{-\theta x} ; \theta>0, x \geq 0
$$

Find the moment generating function of X, and hence find first three moments about origin.
(b) The following table gives the number of aircraft accidents that occurred during six days of the week. Find whether the accidents are uniformly distributed over the week at 5% level of significance.

Days	Mon.	Tues.	Wed. Thur.	Fri.	Sat.	Total	
No. of accidents	14	18	12	11	15	14	84

[You may like to use the following values :

$$
x_{5,0.05}^{2}=11.070, \quad x_{6,0.05}^{2}=12.592, \quad \chi_{7,0.05}^{2}=14.0671 .
$$

6. (a) For the data given below

X	12	9	8	10	11	13	7
Y	14	8	6	9	11	12	3

find :
(i) the correlation coefficient between x and y.
(ii) the regression equation of y on x.
(b) If X is a random variate such that $E(X)=3$ and $\mathrm{E}\left(\mathrm{X}^{2}\right)=13$, use Chebychev's inequality to determine a lower bound for P (-2 $<\mathrm{X}<8$).
7. Which of the following statements are true or false? Give reasons for your answer.
(a) For negatively skewed distribution, Pearson's coefficient of skewness is negative.
(b) Variance is independent of change of origin and scale.
(c) If A and B are independent events then A^{c} (Complement of A) is also independent of B.
(d) $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ is a random sample from a uniform distribution with probability density function

$$
\begin{aligned}
f(x) & =\frac{1}{\beta-\alpha}, \text { if } \alpha<x<\beta \\
& =0, \quad \text { otherwise }
\end{aligned}
$$

Then the maximum likelihood estimator of α is $\min \left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)$.
(e) If X has F -distribution with $\mathrm{n}_{1}, \mathrm{n}_{2}$ degrees of freedom, then $\frac{1}{\mathrm{X}}$ also has F-distribution with same n_{1}, n_{2} degrees of freedoms.

एम.टी.ई.-11

स्नातक उपाधि कार्यक्रम

सत्रांत परीक्षा
जून, 2014

ऐच्छिक पाठ्यक्रम : गणित

एम.टी.ई.-11 : प्रायिकता और सांख्यिकी

समय : 2 घण्टे
अधिकतम अंक : 50
(कुल का : 70\%)
नोट : प्रश्न सं. 7 अनिवार्य है। प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए । कैलकुलेटरों का प्रयोग करने की अनुमति नहीं है ।

1. (क) यदि R और S चर X पर n प्रेक्षणों के समुच्चय के लिए परिसर और मानक विचलन हैं, तब दिखाइए कि $\mathrm{S} \leq \mathrm{R}$.
(ख) दो अनभिनत पाँसे फेंके जाते हैं । मान लीजिए
A_{1} : पहले पाँसे पर विषम संख्या है
A_{2} : दूसरे पाँसे पर विषम संख्या है
A_{3} : पहले और दूसरे पाँसे पर संख्याओं का विषम योगफल है
$\mathrm{A}_{1}, \mathrm{~A}_{2}$ और A_{3} के स्वातंत्र्य पर टिप्पणी कीजिए ।
(ग) $\left[\theta-\frac{1}{2}, \theta+\frac{1}{2}\right]$ पर एकसमान समष्टि से आमाप n का यादृच्छिक प्रतिदर्श लिया जाता है । θ का अधिकतम संभाविता आकलक प्राप्त कीजिए । क्या अद्वितीय आकलक का अस्तित्व होता है ? उत्तर के कारण दीजिए।
2. (क) मान लीजिए $X,(0,1)$ पर एकसमान घनत्व वाला यादृच्छिक चर है। निम्नलिखित ज्ञात कीजिए :
(i) $\mathrm{E}(\sqrt{\mathrm{x}})$,
(ii) $\mathrm{y}=\sqrt{\mathrm{x}}$ का pdf ,
(iii) $\mathrm{E}(\mathrm{y})$ और
(iv) जाँच कीजिए कि $\mathrm{E}(\mathrm{y})=\mathrm{E}(\sqrt{\mathrm{x}})$ है या नहीं ।
(ख) $\mathrm{f}(\mathrm{x})$ से लिए गए एकल प्रेक्षण पर आधारित
$H_{1}: f(x)=\frac{1}{2} \exp (-|x|),-\infty<x<\infty$ के
विरुद्ध $H_{0}: f(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} \mathrm{x}^{2}},-\infty<\mathrm{x}<\infty$
की जाँच के लिए एक परीक्षण तैयार कीजिए। परीक्षण
के आमाप और क्षमता के लिए व्यंजक ज्ञात कीजिए।
3. (क) यादृच्छिक सदिश (X, Y) का संयुक्त घनत्व फलन निम्नलिखित है :

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cc}
\frac{1}{\pi}, & \mathrm{x}^{2}+\mathrm{y}^{2} \leq 1 \\
0, & \text { अन्यथा }
\end{array}\right.
$$

तब X और Y का उपांत प्रायिकता घनत्व फलन ज्ञात कीजिए । दिखाइए कि $\operatorname{cov}(\mathrm{X}, \mathrm{Y})=0$ परन्तु X और Y स्वतंत्र नहीं हैं ।
(ख) बेज प्रमेय का कथन दीजिए। तीन थैले हैं जिनमें क्रमश: 2 सफेद गेंदें, एक सफेद और एक काली गेंद, तथा 2 काली गेंेंदें हैं एक थैला यादृच्छया चुना जाता है और उसमें से एक गेंद निकाली जाती है । यह गेंद सफेद रंग की निकलती है । इसकी क्या प्रायिकता है कि चुने गए थैले में बची हुई गेंद सफेद होगी ?
4. (क) मूल-बिन्दु के प्रति प्रथम तीन आघूर्ण $\mathrm{m}_{1}^{\prime}=\frac{\mathrm{n}+1}{2}$, $\mathrm{m}_{2}^{\prime}=\frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$ और $\mathrm{m}_{3}^{\prime}=\frac{\mathrm{n}(\mathrm{n}+1)^{2}}{4}$
द्वारा दिए गए हैं। आँकड़े का वैषम्य ज्ञात कीजिए।
(ख) एक टैक्सी कैब कम्पनी के पास दो प्रकार की कैब -A और B हैं । A और B प्रकार की कैबों की संख्या क्रमश: 12 और 8 हैं । इनमें से यदि 5 टैक्सी कैब वर्कशॉप में मरम्मत के लिए गई हुई हैं और प्रत्येक प्रकार की कैब की मरम्मत में समान समय लगेगा, तब इसकी क्या प्रायिकता है कि
(i) इनमें से $3, \mathrm{~A}$ प्रकार की हैं और $2, \mathrm{~B}$ प्रकार की हैं ?
(ii) इनमें से कम-से-कम $3, \mathrm{~A}$ प्रकार की हैं ?
(iii) पाँचों एक ही प्रकार की हैं ?
5. (क) मान लीजिए X, निम्नलिखित $p d f$ वाला एक यादृच्छिक चर है :

$$
f(x)=\theta e^{-\theta x} ; \quad \theta>0, \quad x \geq 0
$$

X का आघूर्ण जनक फलन ज्ञात कीजिए और इस तरह मूल-बिन्दु के प्रति प्रथम तीन आघूर्ण ज्ञात कीजिए ।
(ख) निम्नलिखित तालिका सप्ताह के छह दिनों के दौरान होने वाली विमान दुर्घटनाओं को दर्शाती है । 5% सार्थकता स्तर पर सप्ताह के दौरान होने वाली दुर्घटनाएँ एकसमानत: बंटित हैं या नहीं, ज्ञात कीजिए ।

दिन	सोम.	मंगल.	बुध.	बृहस्पति.	शुक्र.	शनि.	कुल
दुर्घटनाओं की सं.	14	18	12	11	15	14	84

[आप निम्नलिखित मानों का प्रयोग कर सकते हैं :

$$
\left.\chi_{5,0.05}^{2}=11.070, \quad x_{6,0.05}^{2}=12.592, \quad \chi_{7,0.05}^{2}=14.067\right] .
$$

6. (क) नीचे दिए गए आँकड़ों के लिए

X	12	9	8	10	11	13	7
Y	14	8	6	9	11	12	3

निम्नलिखित ज्ञात कीजिए :
(i) x और y के बीच सहसंबंध गुणांक
(ii) x पर y का समाश्रयण समीकरण
(ख) यदि X एक यादृच्छिक चर है जिसके लिए $\mathrm{E}(\mathrm{X})=3$ और $\mathrm{E}\left(\mathrm{X}^{2}\right)=13, \mathrm{P}(-2<\mathrm{X}<8)$ के लिए निम्न बंध निर्धारित करने के लिए शैबीशेव असमिका का प्रयोग कीजिए।
7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तर के कारण बताइए ।
(क) ॠणात्मक विषम बंटन के लिए पियर्सन का वैषम्य गुणांक ऋणात्मक है ।
(ख) प्रसरण मूल-बिन्दु और पैमाने के परिवर्तन से स्वतंत्र होता है।
(ग) यदि A और B स्वतंत्र घटनाएँ हैं तो A^{c} (A का पूरक) भी B से स्वतंत्र होगा ।
(घ) $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ प्रायिकता घनत्व फलन

$$
\begin{aligned}
f(x) & =\frac{1}{\beta-\alpha}, \text { यदि } \alpha<x<\beta \\
& =0, \quad \text { अन्यथा }
\end{aligned}
$$

वाले एकसमान बंटन से यादृच्छिक प्रतिदर्श है । तब α का अधिकतम संभाविता आकलक $\min \left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)$ है ।
(ङ) यदि X के लिए स्वातंत्र्य कोटियों $\mathrm{n}_{1}, \mathrm{n}_{2}$ वाला F -बंटन है, तब $\frac{1}{\mathrm{X}}$ के लिए भी वही स्वातंत्र्य कोटियों $\mathrm{n}_{1}, \mathrm{n}_{2}$ वाला F -बंटन है।

