No. of Printed Pages: 12

MTE-11

BACHELOR'S DEGREE PROGRAMME

Term-End Examination June, 2014

00921

ELECTIVE COURSE: MATHEMATICS MTE-11: PROBABILITY AND STATISTICS

Time: 2 hours

Maximum Marks: 50

(Weightage: 70%)

Note: Question no. 7 is compulsory. Answer any four questions from questions no. 1 to 6. Calculators are not allowed.

- 1. (a) If R and S are the range and standard deviation for a set of n observations on a variable X, show that $S \le R$.
- 3

(b) Two unbiased dice are thrown. Let

A₁: Odd number on the first die

A₂: Odd number on the second die

A₃: Odd sum of the numbers on first and second die.

Comment on the independence of A_1 , A_2 and A_3 .

(c) A random sample of size n is drawn from a uniform population over $\left[\theta-\frac{1}{2},\ \theta+\frac{1}{2}\right]$. Obtain maximum likelihood estimator of θ . Does a unique estimator exist ? Give reasons.

4

4

- 2. (a) Let X be a random variable having uniform density over (0, 1). Find
 - (i) $\mathbf{E}(\sqrt{\mathbf{x}})$,
 - (ii) $pdf of y = \sqrt{x}$,
 - (iii) E(y) and
 - (iv) check whether $E(y) = E(\sqrt{x})$ or not.
 - (b) Develop a test for testing

$$H_0: f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, -\infty < x < \infty \text{ against}$$

$$H_1: f(x) = \frac{1}{2} \exp(-|x|), -\infty < x < \infty$$

based on a single observation drawn from f(x). Obtain expression for size and power of the test.

3. (a) The random vector (X, Y) has the joint density function given by

$$f(x, y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Then find the marginal probability density function of X and Y. Show that cov(X, Y) = 0 but X and Y are not independent.

6

(b) State Bayes theorem. There are three bags containing 2 white balls, 1 white and 1 black ball, and 2 black balls respectively. A bag is selected randomly and a ball is drawn. It is found to be white. What is the probability that remaining ball in the selected bag is white?

4

4. (a) The first three moments about the origin are given by $m_1' = \frac{n+1}{2}$, $m_2' = \frac{(n+1)(2n+1)}{6} \text{ and } m_3' = \frac{n(n+1)^2}{4}.$

Examine the skewness of the data.

5

P.T.O.

- (b) A taxi cab company has two types of cabs A and B. The number of cabs of type A and B are 12 and 8 respectively. If 5 of these taxi cabs are in the workshop for repairs and the time needed for repairing each of the types is same, what is the probability that
 - (i) 3 of them are of type A and 2 of them are type B?
 - (ii) at least 3 of them are of type A?
 - (iii) all 5 are of same type?

5. (a) Let X be a random variable with pdf

$$f(x) = \theta e^{-\theta x}; \ \theta > 0, \ x \ge 0.$$

Find the moment generating function of X. and hence find first three moments about origin.

5

5

5

The following table gives the number of (b) aircraft accidents that occurred during six days of the week. Find whether the accidents are uniformly distributed over the week at 5% level of significance.

> Mon. Tues. Wed. Thur. Fri. Sat. Total 12 11 15 84 14

[You may like to use the following values:

18

$$\chi^2_{5,\,0\cdot05}=11\cdot070,\quad \chi^2_{6,\,0\cdot05}=12\cdot592,\quad \chi^2_{7,\,0\cdot05}=14\cdot067].$$

MTE-11

Days No. of

accidents

6. (a) For the data given below

X	12	9	8	10	11	13	7
Y	14	8	6	9	11	12	3

find:

6

- (i) the correlation coefficient between x and y.
- (ii) the regression equation of y on x.
- (b) If X is a random variate such that E(X) = 3 and $E(X^2) = 13$, use Chebychev's inequality to determine a lower bound for P(-2 < X < 8).

4

7. Which of the following statements are *true* or false? Give reasons for your answer.

- (a) For negatively skewed distribution, Pearson's coefficient of skewness is negative.
- (b) Variance is independent of change of origin and scale.
- (c) If A and B are independent events then A^c (Complement of A) is also independent of B.

(d) X_1 , X_2 , ... X_n is a random sample from a uniform distribution with probability density function

$$f(x) = \frac{1}{\beta - \alpha}$$
, if $\alpha < x < \beta$
= 0, otherwise

Then the maximum likelihood estimator of α is min $(X_1, X_2, ... X_n)$.

(e) If X has F-distribution with n_1 , n_2 degrees of freedom, then $\frac{1}{X}$ also has F-distribution with same n_1 , n_2 degrees of freedoms.

स्नातक उपाधि कार्यक्रम सत्रांत परीक्षा जून, 2014

ऐच्छिक पाठ्यक्रम : गणित

एम.टी.ई.-11 : प्रायिकता और सांख्यिकी

समय : 2 घण्टे

अधिकतम अंक : 50

(कुल का : 70%)

नोट: प्रश्न सं. 7 अनिवार्य है। प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैलकुलेटरों का प्रयोग करने की अनुमति **नहीं** है।

- 1. (क) यदि R और S चर X पर n प्रेक्षणों के समुच्चय के लिए परिसर और मानक विचलन हैं, तब दिखाइए कि $S \leq R$.
- 3
- (ख) दो अनिभनत पाँसे फेंके जाते हैं। मान लीजिए

A₁ : पहले पाँसे पर विषम संख्या है

 ${
m A_2}$: दूसरे पाँसे पर विषम संख्या है

A₃ : पहले और दूसरे पाँसे पर संख्याओं का विषम योगफल है

 ${
m A_1,\,A_2}$ और ${
m A_3}$ के स्वातंत्र्य पर टिप्पणी कीजिए ।

(ग)
$$\left[\theta-\frac{1}{2},\ \theta+\frac{1}{2}\right]$$
 पर एकसमान समष्टि से आमाप n का यादृच्छिक प्रतिदर्श लिया जाता है । θ का अधिकतम संभाविता आकलक प्राप्त कीजिए । क्या अद्वितीय आकलक का अस्तित्व होता है ? उत्तर के कारण दीजिए ।

4

4

- 2. (क) मान लीजिए X, (0, 1) पर एकसमान घनत्व वाला यादृच्छिक चर है। निम्नलिखित ज्ञात कीजिए:
 - (i) $E(\sqrt{x})$,
 - (ii) $y = \sqrt{x}$ on pdf,
 - (iii) E(y) और
 - (iv) जाँच कीजिए कि $E(y) = E(\sqrt{x})$ है या नहीं।
 - (ख) f(x) से लिए गए एकल प्रेक्षण पर आधारित $H_1: f(x) = \frac{1}{2} \exp\left(-|x|\right), -\infty < x < \infty \text{ क}$ विरुद्ध $H_0: f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, -\infty < x < \infty$ की जाँच के लिए एक परीक्षण तैयार कीजिए । परीक्षण के आमाप और क्षमता के लिए व्यंजक ज्ञात कीजिए ।

MTE-11

3. (क) यादृच्छिक सदिश (X, Y) का संयुक्त घनत्व फलन निम्नलिखित है:

$$f(x, y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1 \\ 0, & 3 - 2 = 3 \end{cases}$$

तब X और Y का उपांत प्रायिकता घनत्व फलन ज्ञात कीजिए । दिखाइए कि cov(X, Y) = 0 परन्तु X और Y स्वतंत्र नहीं हैं ।

- (ख) बेज प्रमेय का कथन दीजिए । तीन थैले हैं जिनमें क्रमश: 2 सफेद गेंदें, एक सफेद और एक काली गेंद, तथा 2 काली गेंदें हैं । एक थैला यादृच्छया चुना जाता है और उसमें से एक गेंद निकाली जाती है । यह गेंद सफेद रंग की निकलती है । इसकी क्या प्रायिकता है कि चुने गए थैले में बची हुई गेंद सफेद होगी ?
- 4. (क) मूल-बिन्दु के प्रति प्रथम तीन आघूर्ण $m_1' = \frac{n+1}{2}$, $m_2' = \frac{(n+1)(2n+1)}{6} \quad \text{और} \quad m_3' = \frac{n(n+1)^2}{4}$ द्वारा दिए गए हैं । आँकड़े का वैषम्य ज्ञात कीजिए ।

6

- (ख) एक टैक्सी कैब कम्पनी के पास दो प्रकार की कैब — A और B हैं । A और B प्रकार की कैबों की संख्या क्रमश: 12 और 8 हैं । इनमें से यदि 5 टैक्सी कैब वर्कशॉप में मरम्मत के लिए गई हुई हैं और प्रत्येक प्रकार की कैब की मरम्मत में समान समय लगेगा, तब इसकी क्या प्रायिकता है कि
 - (i) इनमें से 3, A प्रकार की हैं और 2, B प्रकार की हैं ?
 - (ii) इनमें से कम-से-कम 3, A प्रकार की हैं ?
 - (iii) पाँचों एक ही प्रकार की हैं ?

5. (क) मान लीजिए X, निम्नलिखित pdf वाला एक यादुच्छिक चर है:

$$f(x) = \theta e^{-\theta x}; \quad \theta > 0, \quad x \ge 0.$$

5

5

5

X का आघूर्ण जनक फलन ज्ञात कीजिए और इस तरह मूल-बिन्दु के प्रति प्रथम तीन आघूर्ण ज्ञात कीजिए ।

(ख) निम्नलिखित तालिका सप्ताह के छह दिनों के दौरान होने वाली विमान दुर्घटनाओं को दर्शाती है। 5% सार्थकता स्तर पर सप्ताह के दौरान होने वाली दुर्घटनाएँ एकसमानत: बंटित हैं या नहीं, ज्ञात कीजिए।

दिन	सोम.	मंगल.	बुध.	बृहस्पति.	शुक्र.	शनि.	कुल
दुर्घटनाओं की सं.	14	18	12	11	15	14	84

[आप निम्नलिखित मानों का प्रयोग कर सकते हैं :

$$\chi^2_{5,\,0.05} = 11.070, \quad \chi^2_{6,\,0.05} = 12.592, \quad \chi^2_{7,\,0.05} = 14.067].$$

6. (क) नीचे दिए गए आँकड़ों के लिए

X	12	9	8	10	11	13	7
Y	14	8	6	9	11	12	3

निम्नलिखित ज्ञात कीजिए:

6

- (i) x और y के बीच सहसंबंध गुणांक
- (ii) x पर y का समाश्रयण समीकरण
- (ख) यदि X एक यादृच्छिक चर है जिसके लिए E(X)=3 और $E(X^2)=13$, P(-2< X<8) के लिए निम्न बंध निर्धारित करने के लिए शैबीशेव असमिका का प्रयोग कीजिए।
- 7. निम्नलिखित में से कौन-से कथन *सत्य* हैं और कौन-से *असत्य* ? अपने उत्तर के कारण बताइए । 10
 - (क) ऋणात्मक विषम बंटन के लिए पियर्सन का वैषम्य गुणांक ऋणात्मक है।
 - (ख) प्रसरण मूल-बिन्दु और पैमाने के परिवर्तन से स्वतंत्र होता है।
 - (ग) यदि A और B स्वतंत्र घटनाएँ हैं तो A^c (A का पूरक) भी B से स्वतंत्र होगा।

(घ) $X_1, X_2, ... X_n$ प्रायिकता घनत्व फलन $f(x) = \frac{1}{\beta - \alpha} \ , \ \text{यद} \ \alpha < x < \beta$

वाले एकसमान बंटन से यादृच्छिक प्रतिदर्श है । तब α का अधिकतम संभाविता आकलक $\min{(X_1,X_2,...X_n)}$ है ।

(ङ) यदि X के लिए स्वातंत्र्य कोटियों $n_1,\,n_2$ वाला F-बंटन है, तब $\frac{1}{X}$ के लिए भी वही स्वातंत्र्य कोटियों $n_1,\,n_2$ वाला F-बंटन है ।