No. of Printed Pages : 8

03141

Term-End Examination

June, 2014

ELECTIVE COURSE : MATHEMATICS MTE-03 : MATHEMATICAL METHODS

Time : 2 hours

Maximum Marks : 50

(Weightage 70%)

MTE-03

- Note: Question no. 7 is compulsory. Attempt any four questions from Q. No. 1 to Q. No. 6. Use of calculators is **not** allowed.
- 1. (a) Let \mathbf{Q} be the set of rational numbers. If $f: \mathbf{Q} \to \mathbf{Q}$ is defined by $f(\mathbf{x}) = \alpha + \beta \mathbf{x}$, where $\alpha, \beta, \mathbf{x} \in \mathbf{Q}$ and $\beta \neq 0$, then find $f^{-1}: \mathbf{Q} \to \mathbf{Q}$, if it exists.

(b) If
$$f(x) = \left(\frac{a+x}{b+x}\right)^{a+b+2x}$$
 then find f'(0),

where a and b are constants.

- (c) Find the distance of the point A(0, -4, -18) from the line $\frac{x+7}{3} = \frac{y-5}{-1} = \frac{z-9}{4}$.
- 2. (a) Two urns contain respectively 5 white and 7 red balls and 4 white and 2 red balls. An urn is chosen randomly and then 2 balls are drawn without replacement from the chosen urn. If both balls drawn are white, find the probability that the second urn is chosen.

1

MTE-03

P.T.O.

3

2

4

(b) Integrate

$$\int \frac{\ln\left(x+1\right)}{\sqrt{x+1}} \, \mathrm{d}x.$$

(c) By the method of least squares fit a straight line v = a + bx to the data given below :

x	- 2	-1	0	3
у	4	6	9	0

Also find the coefficient of correlation between x and y.

3. (a) Four identical coins are tossed 176 times and the number of heads appeared each time is as follows :

Number of heads	0	1	2	3	4
Frequency	16	36	75	37	12

At 5% level of significance, test the hypothesis that the coins are unbiased.

[Given $\chi^2_{0.05, 4} = 9.49$, $\chi^2_{0.05, 5} = 11.07$,

$$\chi^2_{0.05, 6} = 12.59$$
]

 $\mathbf{2}$

5

5

 $\mathbf{2}$

(b) Solve the differential equation

$$(x^2 + y^2) \frac{dy}{dx} = xy. 3$$

(c) A company manufactures bolt and nut and assembles them. It is observed that during manufacturing, 11 out of 100 bolts are likely to be defective whereas 7 out of 100 nuts are likely to be defective. Find the probability that the assembled parts will not be defective.

MTE-03

4. (a) If $y = x^3$, then verify that $\frac{dy'}{dx} = y' \frac{dy'}{dy}$, where

$$\mathbf{y'} = \frac{\mathbf{dy}}{\mathbf{dx}}.$$

(b) Find the mean deviation of the distribution given below :

x	20	25	30	35	40
f	8	10	16	10	6

- (c) Find a unit vector perpendicular to the two vectors $3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{i} + \mathbf{j} + \mathbf{k}$. Also find the area of the triangle having the above two vectors as two of its sides.
- 5. (a) Determine the 45th term and the sum of first 150 terms of an A.P. whose first three terms are 11, 9, 7.
 - (b) Show that the equations $2x^2 + 5x + 2 = 0$ and $4x^2 + 8x + 3 = 0$ have a common root. Find the product of the other two roots of the equations.
 - (c) Find two non-zero numbers whose sum is 15 and the square of one multiplied by the cube of the other is maximum.
- 6. (a) If V = 2 $\cos^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, apply Euler's

3

theorem to show that

$$\mathbf{x}\frac{\partial \mathbf{V}}{\partial \mathbf{x}} + \mathbf{y}\frac{\partial \mathbf{V}}{\partial \mathbf{y}} + \cot \frac{\mathbf{V}}{2} = 0.$$

MTE-03

4

3

3

4

3

- (b) The number of cars arriving at a railway station follows the Poisson distribution. If the average number of car arrivals during a specified period of half an hour is 2, find the probabilities that during a given half an hour
 - (i) no car will arrive.
 - (ii) at least two cars will arrive.
 - (iii) at the most 3 cars will arrive.
 - (iv) between 1 and 3 cars will arrive.

4

3

- (c) A population consists of three numbers 2, 5,
 8. Enumerate all possible samples of size 2 which can be drawn without replacement from this population. Verify that the sample mean is an unbiased estimate of the population mean. Calculate the standard error of the sample mean.
- 7. State whether the following statements are true or false giving reasons in support of your answer: $5\times 2=10$
 - (i) If A and B are two independent events, then \overline{A} and B are also independent.
 - (ii) The points (-4, 0, 0) and (0, 0, 1) lie on the same side of the plane 2x 3y z + 4 = 0.
 - (iii) There exists no point of inflexion for the curve $y = x^3 8$.
 - (iv) If the mean and s.d. of a binomial distribution are respectively 4 and $\sqrt{\frac{8}{3}}$, then

$$\mathbf{P}(\mathbf{X}=\mathbf{0}) = \left(\frac{2}{3}\right)^{12}.$$

(v) The y-axis is an asymptote to the curve $x^2y^2 - 9x^2 - 2 = 0.$

MTE-03

एम.टी.ई.-03

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा जून, 2014

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-03 : गणितीय विधियाँ

समय : 2 घण्टे

अधिकतम अंक : 50

(कुल का 70%)

4

2

4

- नोट: प्रश्न सं. 7 करना ज़रूरी है । प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए । कैलकुलेटरों का प्रयोग करने की अनुमति नहीं है ।
- **1.** (क) मान लीजिए **Q** परिमेय संख्याओं का समुच्चय है । यदि f : **Q** → **Q**, f(x) = α + β x द्वारा परिभाषित है, जहाँ α , β , x ∈ **Q** और $\beta \neq 0$, तब f⁻¹ : **Q** → **Q** ज्ञात कीजिए, यदि इसका अस्तित्व है ।
 - (ख) यदि $f(x) = \left(\frac{a+x}{b+x}\right)^{a+b+2x}$, तब f'(0) ज्ञात कीजिए, जहाँ a और b अचर हैं।
 - (ग) रेखा $\frac{x+7}{3} = \frac{y-5}{-1} = \frac{z-9}{4}$ से बिन्दु A(0, -4, -18) की दरी ज्ञात कीजिए |
- (क) दो बर्तनों में क्रमशः 5 सफेद और 7 लाल गेंदें और 4 सफेद और 2 लाल गेंदें हैं । एक बर्तन को यादृच्छया चुना जाता है और चुने हुए बर्तन से प्रतिस्थापन के बिना 2 गेंदें निकाली जाती हैं । यदि निकाली गई दोनों गेंदें सफेद हैं, तब इसकी प्रायिकता ज्ञात कीजिए कि दूसरा बर्तन चुना गया ।

MTE-03

P.T.O.

5

(ख)
$$\int rac{ln\left(\mathrm{x}+1
ight)}{\sqrt{\mathrm{x}+1}} \, \mathrm{d}\mathrm{x}$$
 को समाकलित कीजिए ।

 (ग) न्यूनतम वर्ग विधि से नीचे दिए गए आंकड़ों में सरल रेखा y = a + bx को फिट कीजिए :

x	-2	- 1	0	3
у	4	6	9	0

x और y के बीच सहसंबंध गुणांक भी ज्ञात कीजिए। 5

 $\mathbf{2}$

5

3

 $\mathbf{2}$

 (क) चार समान सिक्कों को 176 बार उछाला जाता है और प्रत्येक बार चित आने की संख्या निम्नानुसार है :

चितों की संख्या	0	1	2	3	4
बारंबारता	16	36	75	37	12

5% सार्थकता स्तर पर इस परिकल्पना की जाँच कीजिए कि सिक्के अनभिनत हैं ।

[दिया गया है $\chi^2_{0.05, 4} = 9.49, \ \chi^2_{0.05, 5} = 11.07,$ $\chi^2_{0.05, 6} = 12.59$]

- (ख) अवकल समीकरण $(x^2 + y^2) \frac{dy}{dx} = xy$ को हल कीजिए।
- (ग) एक कम्पनी बोल्ट और नट बनाती है और उन्हें एसेम्बल करती है । विनिर्माण के दौरान यह देखा गया कि 100 में से 11 बोल्ट के खराब होने की संभावना है, जबकि 100 नटों में से 7 नटों के खराब होने की संभावना है । एसेम्बल किए गए पुर्ज़े खराब नहीं होंगे इसकी प्रायिकता ज्ञात कीजिए ।

MTE-03

4. (क) यदि $y = x^3$, तब सत्यापित कीजिए कि $\frac{dy'}{dx} = y' \frac{dy'}{dy}$,

जहाँ y' =
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
 है ।

 (ख)
 नीचे दिए गए बंटन का माध्य विचलन ज्ञात कीजिए :

 x
 20
 25
 30
 35
 40

 f
 8
 10
 16
 10
 6

- (ग) एक एकक सदिश ज्ञात कीजिए जो दो सदिशों 3i + 2j – k और i + j + k पर लंब हो । उस त्रिभुज का क्षेत्रफल भी ज्ञात कीजिए जिसकी दो भुजाएँ उपर्युक्त दो सदिश हों ।
- (क) एक समांतर श्रेढ़ी जिसके पहले तीन पद 11, 9, 7 हों, उसका 45वाँ पद और पहले 150 पदों का योगफल ज्ञात कीजिए।
 - (ख) दिखाइए कि समीकरणों $2x^2 + 5x + 2 = 0$ और $4x^2 + 8x + 3 = 0$ का एक सार्व मूल है । समीकरणों के अन्य दो मूलों का गुणनफल ज्ञात कीजिए ।
 - (ग) ऐसी दो शून्येतर संख्याएँ ज्ञात कीजिए जिनका योगफल 15 है और एक संख्या के वर्ग और दूसरी संख्या के घन का गुणनफल अधिकतम है।

6. (क) यदि
$$V = 2 \cos^{-1} \frac{x + y}{\sqrt{x} + \sqrt{y}}$$
 है, तब
 $x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} + \cot \frac{V}{2} = 0$ दिखाने के लिए
ऑयलर प्रमेय को लागू कीजिए ।

7

MTE-03

3

P.T.O.

4

3

3

4

3

- (ख) एक रेलवे स्टेशन पर कारें प्वासों बंटन के अनुसार पहुँचती हैं । यदि किसी विशिष्ट आधे घंटे की अवधि में पहुँचने वाली कारों की औसतन संख्या 2 है, तब दिए गए आधे घंटे के दौरान निम्नलिखित प्रायिकताएँ ज्ञात कीजिए :
 - (i) कोई भी कार नहीं आएगी।
 - (ii) कम-से-कम दो कारें आएँगी।
 - (iii) ज्यादा-से-ज्यादा तीन कारें आएँगी ।
 - (iv) 1 और 3 के बीच कारें आएँगी।

4

3

- (ग) एक समष्टि में तीन संख्याएँ 2, 5, 8 हैं । आमाप 2 के सभी संभावित प्रतिदर्श बताइए जिन्हें इस समष्टि से बिना प्रतिस्थापन के लिया जा सकता है । सत्यापित कीजिए कि प्रतिदर्श माध्य समष्टि माध्य का अनभिनत आकलन है । प्रतिदर्श माध्य की मानक त्रुटि परिकलित कीजिए ।
- बताइए कि निम्नलिखित कथन सत्य हैं या असत्य । अपने उत्तरों के पक्ष में कारण बताइए : 5×2=10
 - (i) यदि A और B दो स्वतंत्र घटनाएँ हैं, तब A और B
 भी स्वतंत्र हैं ।
 - (ii) बिन्दु (-4, 0, 0) और (0, 0, 1) समतल
 2x 3y z + 4 = 0 के एक ही तरफ स्थित हैं ।
 - (iii) वक्र $y = x^3 8$ का कोई नति-परिवर्तन बिन्दु नहीं है ।
 - (iv) यदि द्विपद बंटन का माध्य और मानक विचलन क्रमशः

4 और
$$\sqrt{\frac{8}{3}}$$
 है, तब $P(X = 0) = \left(\frac{2}{3}\right)^{12}$ होगी ।

(v) y-अक्ष वक्र
$$x^2y^2 - 9x^2 - 2 = 0$$
 का अनंतस्पर्शी है ।

MTE-03

2,000