BACHELOR'S DEGREE PROGRAMME

 (BDP)
03141

Term-End Examination
June, 2014

ELECTIVE COURSE : MATHEMATICS
 MTE-03 : MATHEMATICAL METHODS

Time : 2 hours
Maximum Marks : 50
(Weightage 70\%)
Note: Question no. 7 is compulsory. Attempt any four questions from Q. No. 1 to Q. No. 6. Use of calculators is not allowed.

1. (a) Let \mathbb{Q} be the set of rational numbers. If $f: \mathbb{Q} \rightarrow \mathbf{Q}$ is defined by $f(x)=\alpha+\beta \mathbf{x}$, where $\alpha, \beta, x \in \mathbb{Q}$ and $\beta \neq 0$, then find $f^{-1}: \mathbb{Q} \rightarrow \mathbb{Q}$, if it exists.
(b) If $f(x)=\left(\frac{a+x}{b+x}\right)^{a+b+2 x}$ then find $f^{\prime}(0)$, where a and b are constants.
(c) Find the distance of the point $\mathrm{A}(0,-4,-18)$ from the line $\frac{x+7}{3}=\frac{y-5}{-1}=\frac{z-9}{4}$.
2. (a) Two urns contain respectively 5 white and 7 red balls and 4 white and 2 red balls. An urn is chosen randomly and then 2 balls are drawn without replacement from the chosen urn. If both balls drawn are white, find the probability that the second urn is chosen.
(b) Integrate $\int \frac{\ln (\mathrm{x}+1)}{\sqrt{\mathrm{x}+1}} \mathrm{dx}$.
(c) By the method of least squares fit a straight line $y=a+b x$ to the data given below :

x	-2	-1	0	3
y	4	6	9	0

Also find the coefficient of correlation between x and y.
3. (a) Four identical coins are tossed 176 times and the number of heads appeared each time is as follows:

Number of heads	0	1	2	3	4
Frequency	16	36	75	37	12

At 5% level of significance, test the hypothesis that the coins are unbiased.
$\left[\right.$ Given $\chi_{0.05,4}^{2}=9 \cdot 49, \chi_{0.05,5}^{2}=11 \cdot 07$,

$$
\left.\chi_{0.05,6}^{2}=12 \cdot 59\right]
$$

(b) Solve the differential equation

$$
\begin{equation*}
\left(x^{2}+y^{2}\right) \frac{d y}{d x}=x y \tag{3}
\end{equation*}
$$

(c) A company manufactures bolt and nut and assembles them. It is observed that during manufacturing, 11 out of 100 bolts are likely to be defective whereas 7 out of 100 nuts are likely to be defective. Find the probability that the assembled parts will not be defective.
4. (a) If $y=x^{3}$, then verify that $\frac{d y^{\prime}}{d x}=y^{\prime} \frac{d y^{\prime}}{d y}$, where $y^{\prime}=\frac{d y}{d x}$.
(b) Find the mean deviation of the distribution given below :

x	20	25	30	35	40
f	8	10	16	10	6

(c) Find a unit vector perpendicular to the two vectors $3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and $\mathbf{i}+\mathbf{j}+\mathbf{k}$. Also find the area of the triangle having the above two vectors as two of its sides.
5. (a) Determine the $45^{\text {th }}$ term and the sum of first 150 terms of an A.P. whose first three terms are 11, 9,7 .
(b) Show that the equations $2 x^{2}+5 x+2=0$ and $4 x^{2}+8 x+3=0$ have a common root. Find the product of the other two roots of the equations.
(c) Find two non-zero numbers whose sum is 15 and the square of one multiplied by the cube of the other is maximum.
6. (a) If $V=2 \cos ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, apply Euler's theorem to show that

$$
\begin{equation*}
x \frac{\partial V}{\partial x}+y \frac{\partial V}{\partial y}+\cot \frac{V}{2}=0 . \tag{3}
\end{equation*}
$$

(b) The number of cars arriving at a railway station follows the Poisson distribution. If the average number of car arrivals during a specified period of half an hour is 2 , find the probabilities that during a given half an hour
(i) no car will arrive.
(ii) at least two cars will arrive.
(iii) at the most 3 cars will arrive.
(iv) between 1 and 3 cars will arrive.
(c) A population consists of three numbers 2, 5, 8. Enumerate all possible samples of size 2 which can be drawn without replacement from this population. Verify that the sample mean is an unbiased estimate of the population mean. Calculate the standard error of the sample mean.
7. State whether the following statements are true or false giving reasons in support of your answer: $\quad 5 \times 2=10$
(i) If A and B are two independent events, then $\overline{\mathrm{A}}$ and B are also independent.
(ii) The points $(-4,0,0)$ and $(0,0,1)$ lie on the same side of the plane $2 x-3 y-z+4=0$.
(iii) There exists no point of inflexion for the curve $y=x^{3}-8$.
(iv) If the mean and s.d. of a binomial distribution are respectively 4 and $\sqrt{\frac{8}{3}}$, then $\mathrm{P}(\mathrm{X}=0)=\left(\frac{2}{3}\right)^{12}$.
(v) The y-axis is an asymptote to the curve $x^{2} y^{2}-9 x^{2}-2=0$.

स्नातक उपाधि कार्यक्रम
(बी.डी.पी.)
सत्रांत परीक्षा
जून, 2014
ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-03 : गणितीय विधियाँ
समय : 2 घण्टे अधिकतम अंक: 50
(कुल का 70%)
नोट : प्रश्न सं. 7 करना ज़रूरी है । प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए । कैलकुलेटरों का प्रयोग करने की अनुमति नहीं है।

1. (क) मान लीजिए Q परिमेय संख्याओं का समुच्चय है । यदि $\mathrm{f}: \mathbb{Q} \rightarrow \mathbb{Q} \mathrm{f}(\mathrm{x})=\alpha+\beta \mathrm{x}$ द्वारा परिभाषित है, जहाँ $\alpha, \beta, x \in \mathbb{Q}$ और $\beta \neq 0$, तब $\mathbf{f}^{-1}: Q \rightarrow Q$ ज्ञात कीजिए, यदि इसका अस्तित्व है।
(ख) यदि $f(x)=\left(\frac{a+x}{b+x}\right)^{a+b+2 x}$, तब $f^{\prime}(0)$ ज्ञात कीजिए, जहाँ a और b अचर हैं ।
(ग) रेखा $\frac{\mathrm{x}+7}{3}=\frac{\mathrm{y}-5}{-1}=\frac{\mathrm{z}-9}{4}$ से बिन्दु
$\mathrm{A}(0,-4,-18)$ की दूरी ज्ञात कीजिए।
2. (क) दो बर्तनों में क्रमशः 5 सफेद और 7 लाल गेंदें और 4 सफेद और 2 लाल गेंदें हैं। एक बर्तन को यादृच्छया चुना जाता है और चुने हुए बर्तन से प्रतिस्थापन के बिना 2 गेंदें निकाली जाती हैं । यदि निकाली गई दोनों गेंदें सफेद हैं, तब इसकी प्रायिकता ज्ञात कीजिए कि दूसरा बर्तन चुना गया।
(ख) $\int \frac{\ln (\mathrm{x}+1)}{\sqrt{\mathrm{x}+1}} \mathrm{dx}$ को समाकलित कीजिए ।
(ग) न्यूनतम वर्ग विधि से नीचे दिए गए आंकड़ों में सरल रेखा $y=a+b x$ को फिट कीजिए :

x	-2	-1	0	3
y	4	6	9	0

x और y के बीच सहसंबंध गुणांक भी ज्ञात कीजिए ।
3. (क) चार समान सिक्कों को 176 बार उछाला जाता है और प्रत्येक बार चित आने की संख्या निम्नानुसार है :

चितों की संख्या	0	1	2	3	4
बारंबारता	16	36	75	37	12

5% सार्थकता स्तर पर इस परिकल्पना की जाँच कीजिए कि सिक्के अनभिनत हैं।
[दिया गया है $\chi_{0.05,4}^{2}=9.49, \chi_{0.05,5}^{2}=11.07$,

$$
\left.\chi_{0.05,6}^{2}=12 \cdot 59\right]
$$

(ख) अवकल समीकरण $\left(x^{2}+y^{2}\right) \frac{d y}{d x}=x y$ को हल कीजिए।
(ग) एक कम्पनी बोल्ट और नट बनाती है और उन्हें एसेम्बल करती है। विनिर्माण के दौरान यह देखा गया कि 100 में से 11 बोल्ट के खराब होने की संभावना है, जबकि 100 नटों में से 7 नटों के खराब होने की संभावना है । एसेम्बल किए गए पुर्ज़े खराब नहीं होंगे इसकी प्रायिकता ज्ञात कीजिए।
4. (क) यदि $\mathrm{y}=\mathrm{x}^{3}$, तब सत्यापित कीजिए कि $\frac{\mathrm{dy}^{\prime}}{\mathrm{dx}}=\mathrm{y}^{\prime} \frac{\mathrm{dy}^{\prime}}{\mathrm{dy}}$, जहाँ $y^{\prime}=\frac{d y}{d x}$ है ।
(ख) नीचे दिए गए बंटन का माध्य विचलन ज्ञात कीजिए :

x	20	25	30	35	40
f	8	10	16	10	6

(ग) एक एकक सदिश ज्ञात कीजिए जो दो सदिशों $3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ और $\mathbf{i}+\mathbf{j}+\mathbf{k}$ पर लंब हो। उस त्रिभुज का क्षेत्रफल भी ज्ञात कीजिए जिसकी दो भुजाएँ उपर्युक्त दो सदिश हों ।
5. (क) एक समांतर श्रेढ़ी जिसके पहले तीन पद $11,9,7$ हों, उसका 45 वाँ पद और पहले 150 पदों का योगफल ज्ञात कीजिए।
(ख) दिखाइए कि समीकरणों $2 \mathrm{x}^{2}+5 \mathrm{x}+2=0$ और $4 \mathrm{x}^{2}+8 \mathrm{x}+3=0$ का एक सार्व मूल है । समीकरणों के अन्य दो मूलों का गुणनफल ज्ञात कीजिए।
(ग) ऐसी दो शून्येतर संख्याएँ ज्ञात कीजिए जिनका योगफल 15 है और एक संख्या के वर्ग और दूसरी संख्या के घन का गुणनफल अधिकतम है।
6. (क) यदि $V=2 \cos ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$ है, तब $\mathrm{x} \frac{\partial \mathrm{V}}{\partial \mathrm{x}}+\mathrm{y} \frac{\partial \mathrm{V}}{\partial \mathrm{y}}+\cot \frac{\mathrm{V}}{2}=0$ दिखाने के लिए ऑयलर प्रमेय को लागू कीजिए ।
(ख) एक रेलवे स्टेशन पर कारें प्वासों बंटन के अनुसार पहुँचती हैं । यदि किसी विशिष्ट आधे घंटे की अवधि में पहुँचने वाली कारों की औसतन संख्या 2 है, तब दिए गए आधे घंटे के दौरान निम्नलिखित प्रायिकताएँ ज्ञात कीजिए :
(i) कोई भी कार नहीं आएगी।
(ii) कम-से-कम दो करें आएँगी।
(iii) ज्यादा-से-ज्यादा तीन करें आएँगी।
(iv) 1 और 3 के बीच करें आएँगी।
(ग) एक समष्टि में तीन संख्याएँ $2,5,8$ हैं। आमाप 2 के सभी संभावित प्रतिदर्श बताइए जिन्हें इस समष्टि से बिना प्रतिस्थापन के लिया जा सकता है । सत्यापित कीजिए कि प्रतिदर्श माध्य समष्टि माध्य का अनभिनत आकलन है। प्रतिदर्श माध्य की मानक त्रुटि परिकलित कीजिए।
7. बताइए कि निम्नलिखित कथन सत्य हैं या असत्य । अपने उत्तरों के पक्ष में कारण बताइए :
(i) यदि A और B दो स्वतंत्र घटनाएँ हैं, तब $\overline{\mathrm{A}}$ और B भी स्वतंत्र हैं ।
(ii) बिन्दु $(-4,0,0)$ और $(0,0,1)$ समतल
$2 \mathrm{x}-3 \mathrm{y}-\mathrm{z}+4=0$ के एक ही तरफ स्थित हैं ।
(iii) वक्र $\mathrm{y}=\mathrm{x}^{3}-8$ का कोई नति-परिवर्तन बिन्दु नहीं है।
(iv) यदि द्विपद बंटन का माध्य और मानक विचलन क्रमशः

4 और $\sqrt{\frac{8}{3}}$ है, तब $\mathrm{P}(\mathrm{X}=0)=\left(\frac{2}{3}\right)^{12}$ होगी ।
(v) y-अक्ष वक्र $x^{2} y^{2}-9 x^{2}-2=0$ का अनंतस्पर्शी है ।

