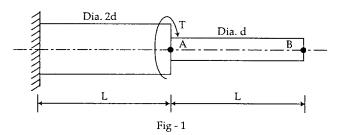
No.	of	Printed	Pages	:	2
-----	----	---------	--------------	---	---

BIMEE-013

B.Tech. MECHANICAL ENGINEERING (BTMEVI)

4
-
\sim
\circ

Term-End Examination June, 2014


0	BIMEE-013 : FINITE ELEMENT ANALYSIS				
Time: 3 hours Maximum Marks					
Note	•	 (i) All questions carry equal marks; (ii) Attempt any five questions, standard notations and symbols have usual meaning. 			
1.	FEA	ass at length a general procedure used in and describe steps in pre - processing, ion and post - processing.			
2.	(a)	Enumerate the seven typical steps used in finite element method. Briefly define each one of them.			
	(b)	Describe different types of shape primitive used in defining 1D, 2D and 3D elements.			
3.	(a)	Develop stiffness matrix equation and shape functions for an axi - symmetric triangular element.			
	(b)	Develop stress strain matrix equation and strain displacement matrix for an axi - symmetric triangular element.			
4.	(a)	Distinguish between: (i) Essential boundary condition and natural boundary condition and (ii) Boundary value problem and initial value problem			

(b) How can a three dimensional problem be reduced to a two dimensional approach? Explain in detail.

7

14

- 5. A horizontal bar fixed at one end is heated uniformly to raise temperature to T°C. Determine the thermal stresses in a bar. Consider the length of the bar as L, cross section as A, Young's modulus E, thermal coefficient of thermal expansion as α and density ρ.
- 6. For a stepped bar as shown in Fig 1, determine the stiffness equation and solve it for the angle of twist at point A and B.

- 7. Answer the following (any three):
 - (a) Compare variational and weighted residual methods in detail.
 - (b) Derive the stiffness matrix for CST element.
 - (c) How would you formulate a frame element that would be able to model a buckling problem? Describe.
 - (d) The weight factors of 1-D Gausian Quadrature sum up to 2. Comment.