
B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination June, 2014

June, 2014						
BIMEE-010: MECHANICAL SYSTEM DESIGN						
Time: 3 hours Maximum M						
Note : Answer any five questions. All questions carry equal marks.						
1.	(a)	What is importance of understanding the problem environment? Discuss the hierarchical nature of engineering problems. Explain the "need statement".	7			
	(b)	Explain four essential attributes in defining a system and give four essential definitions of systems.	7			
2.	(a)	What is the significance of black box approach in system analysis? Explain the general methodology for carrying out system analysis.	7			
	(b)	Explain with the help of suitable examples the difference between an Iconic Model and an Analog Model.	7			
3.	(a)	Explain the following: (i) Combinational Optimization				
		(ii) Subjective Optimization Method				

(b) For the network flow diagram shown below, determine the maximum flow using a suitable algorithm.

7

- 4. Write short notes on any four of the following: 14
 - (a) Planning Horizen
 - (b) Time value of money
 - (c) Feasibility assessment
 - (d) Expected monetary value
 - (e) Probability density function
 - (f) Utility value
- 5. (a) What is the importance of probability in Decision Analysis? Explain Baye's theorem and its application.
 - (b) What are the limitations of simulation approach? How can computers be used for the purpose of simulating a system?
- 6. A firm intends to invest in a piece of equipment and narrowed down its choice of equipment to A₁, A₂ or A₃. Three future states are being considered by the firm:

S₁: Economic progress

S₂: Economic stability

S₃: Economic recession

Analysis leads to the following rates of return for the investment

what course of action do the following decision criteria indicate: maxi-min, maxi-maxi and mini-max regret?

7. For a certain inventory item, the demand rate distribution and Lead-Time (LT) distribution data is given in tables *x* and *y* respectively. If the initial stock = 0, compute the average number of units/short/surplus by Monte-Corlo simulation. Use the following set of random numbers: for demand simulation:

68, 42, 47, 39, 10, 99, 83, 95, 65 and 51

for LT simulation:

12, 76, 39, 40, 31, 21, 75, 50, 88 and 58

Table *x*

demand/	Probability
day	
1	0.25
2	0.30
3	0.20
4	0.15
5	0.10

Table 1/

14

Lead time	Probability
(days)	
2	0.20
3	0.40
5	0.30
6	0.10