B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

June, 2014
00737

BIMEE-008 : MECHANICAL VIBRATION

Time : 3 hours
Maximum Marks : 70
Note: (i) Attempt any five questions.
(ii) Standard symbols have usual meaning.
(iii) Assume missing data if any.

1. (a) Represent the following periodic motion by harmonic series Fig-1(a).

Fig-1(a)
(b) Find the frequency of oscillation for the 7 system shown below Fig-1(b). Assuming bell crank lever to be weightless and stiff.

Fig-1(b)
2. (a) Derive the expression for displacement of mass. If $\mathrm{C}=\mathrm{C}_{\mathrm{c}}$ and $\xi=1$, Fig-2(a).

Fig-2(a)
(b) For the system shown in Fig-2(b). $\mathrm{M}=1.5 \mathrm{~kg}, \mathrm{~K}=4900 \mathrm{~N} / \mathrm{m}, \mathrm{a}=6 \mathrm{~cm}$ and $\mathrm{L}=14 \mathrm{~cm}$ assuming rod to be massless and stiff determine the value of ' C ' for the system to be critically damped.

Fig-2(b)
3. (a) The mass of a "spring-mass dashpot" system is given intial velocity from its equilibrium of $A \omega_{n}$, where ω_{n} is undamped natural frequency of the system. Find the equation of motion for the system when,
(i) $\xi=2.0$
(ii) $\xi=1.0$
(iii) $\xi=0.2$
(b) Find the expression for the logrithmic 7 decreament in case of an underdamped case of spring mass system.
4. (a) A 75 kg machine is mounted on spring of 7 stiffness $K=11.76 \times 10^{5} \mathrm{~N} / \mathrm{m}$ with an assumed damping factor $\xi=0.2 \mathrm{~A} .2 \mathrm{~kg}$ piston within the machine has a reciprocating motion with stroke 0.08 m and 3000 rpm . Assuming the motion of piston to be harmonic, determine the amplitude of vibration of machine and vibratory force transmitted to foundation.
(b) The support of a spring-mass system is vibrating with an amplitude of 5 mm and a frequency of 1150 cycles $/ \mathrm{min}$. if the mass is 0.9 kg . and spring has a stiffness of $1960 \mathrm{~N} / \mathrm{m}$ determine the amplitude of vibration of mass. What amplitude will result if damping of 0.2 is included in system.
5. (a) Derive the expression for natural frequency of torsional system shown in Fig-5(a). Draw the normal mode curve. Show that the nodal distance from J_{2} is $\mathrm{l}_{2}\left(1+\mathrm{Kt}_{2} / \mathrm{Kt}_{1}\right) /$ $\left(1+\mathrm{J}_{2} / \mathrm{J}_{1}\right)$.

Fig-5(a)
(b) Assuming the connecting rod AB to be light and rigid. Determine the natural frequency of oscilation of system Fig-5(b).

Fig - 5(b)
6. (a) Find the principle co-ordinate for the system given in Fig-6(a)

Fig - 6(a)
(b) Obtain the three natural frequencies and corrosponding mode shape for the three degree of freedom system shown in Fig-6(b) below.

7. (a) Find by Holzer's method the natural frequency of the torsional system when its right end is fixed as shown in Fig-7(a) below.

Fig - 7(a)
(b) Find the lowest natural frequency of transverse vibration of system shown in Fig-7(b) below by Raylaigh's method.

8. Explain in brief (any four) : 14
(a) Vibration measuring instruments
(b) Vibration monitoring and diagnosis
(c) Vibration of beams
(d) Frequency response curves
(e) Vibration isolation
(f) Eigen values and Eigen vectors

