B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

June, 2014

BIMEE-007 : ADVANCED DYNAMICS OF MACHINE

Time : 3 hours
Maximum Marks : 70
Note : Attempt any five questions. All questions carry equal marks. Assume any missing data if required anywhere.
Use of scientific calculator is permitted.

1. Block A of mass 20 kg is placed on block B of mass $\mathbf{1 4}$ 30 kg . Coefficient of friction between blocks A and B is 0.35 and between block B and floor is 0.10 as shown in Fig - 1. Force P is applied on block A as shown in Fig - 1. Determine the maximum value of P that will not cause the block A to slide on B or to tip on block B.

Figure - 1
2. The following data relate to a horizontal reciprocating engine :

Mass of reciprocating parts $=120 \mathrm{~kg}$
Crank length $\quad=90 \mathrm{~mm}$
Engine speed $\quad=600 \mathrm{rpm}$
Connecting rod :
Mass
$=90 \mathrm{~kg}$
Length between centres $\quad=450 \mathrm{~mm}$
Distance of Centre of mass from big end Centre $=180 \mathrm{~mm}$

Radius of gyration about an axis through Centre of mass $=150 \mathrm{~mm}$

Find the magnitude and the direction of inertia torque on the crank shaft when the crank has turned 30° from inner-dead centre.
3. A horizontal gas engine running at 210 rpm has a bore of 220 mm and a stroke of 440 mm . The connecting rod is 924 mm long and the reciprocating parts weigh 20 kg . When the crank has turned through an angle of 30° from the inner dead Centre the gas pressures on the cover and the crank sides are $500 \mathrm{kN} / \mathrm{m}^{2}$ respectively. Diameter of piston rod is 40 mm . Determine :
(a) Turning moment on the crank shaft.
(b) Thrust on the bearings.
(c) Acceleration of the flywheel which has a mass of 8 kg and radius of gyration of 600 mm while the power of engine is 22 kW .
4. A machine is coupled to a two stroke engine which produces a torque of $(800+180 \sin 3 \theta) \mathrm{Nm}$ where θ is the crank angle. The mean engine speed is 400 rpm . The flywheel and other rotating parts attached to the engine have a mass of 350 kg at a radius of gyration of 220 mm . Calculate :
(a) Power of the Engine.
(b) Total fluctuation of Speed of the flywheel when the :
(i) Resisting torque is constant.
(ii) Resisting Torque is $(800+80 \sin \theta) \mathrm{Nm}$
5. Three masses of $8 \mathrm{~kg}, 12 \mathrm{~kg}$ and 15 kg attached at radial distances of $80 \mathrm{~mm}, 100 \mathrm{~mm}$ and 60 mm respectively to a disc on a shaft are in complete balance. Determine the angular positions of the masses of 12 kg and 15 kg relative to the 8 kg mass.
6. The rotor of the turbine of a ship has a mass of 2500 kg and rotates at a speed of 3200 rpm counter-clockwise when viewed from stern. The rotor has radius of gyration of 0.4 m determine the gyroscopic couple and its effect when :
(a) The ship steers to left in a curve of 80 m radius at a speed of 15 knots ($1 \mathrm{knot}=1860 \mathrm{~m} / \mathrm{h}$)
(b) The ship pitches 5 degrees above and 5 degrees below the normal position and the bow is descending with its maximum velocity. The pitching motion is simple harmonic with a periodic time of 40 seconds.
(c) The ship rolls and at the instant, its angular velocity is $0.4 \mathrm{rad} / \mathrm{s}$ clockwise when viewed from stern.

Also find the maximum angular acceleration during pitching.
7. A simply supported shaft having a disc of mass 14 5 kg is mounted midway between bearings following are the given parameters for this set up.
Diameter of the shaft $=10 \mathrm{~mm}$.
Bearing span $=500 \mathrm{~mm}$.
Eccentricity $=2 \mathrm{~mm}$.
Viscous damping at the Centre of the disc shaft $=50 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$.
Speed of the shaft $=750 \mathrm{rpm}$.
$\mathrm{E}=2 \times 1011 \mathrm{~N} / \mathrm{m}^{2}$.
Find the maximum stress in the shaft and Power required to drive the shaft.

