No. of Printed Pages : 3

BIME-034

B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

June, 2014

BIME-034 : HEAT AND MASS TRANSFER

Time : 3 hours

00214

Maximum Marks : 70

- **Note :** Attempt **any five** questions. Assume missing data suitably, if any. Use of scientific calculator is **permitted**. Use of Heat and Mass transfer data book permitted.
- 1. (a) A wall thickness L is made of material whose thermal conductivity varies with temperature as follows : $K = K_0 T^2$. Find the expression for steady state conduction through wall/m² and mean thermal conductivity if two surfaces are maintained at temperatures T₁ and T₂. 6+8=14
 - (b) A reactor's wall 320 mm thick is made up of an inner layer of Fire brick (k=0.84 W/mK) covered with a layer of insulation (k=0.16 W/mK). The reactor operates at a temperature of 1350°C and the ambient temperature is 25°C. Determine the thickness of insulation which gives minimum heat loss and also calculate the heat loss presuming that insulating material has a maximum temperature of 1200°C.

BIME-034

P.T.O.

- (a) Derive the expression for temperature distribution and heat flow through spherical system. 7+7=14
 - (b) Derive the expression for temperature distribution for short fin with end insulated.
- 3. (a) A stainless steel wire length 2 m and diameter 2.5 mm is submerged in a fluid at 45° C and an electric current of 300 A passes through it. Determine the temperature of the wire at the centre and at the surface of the wire. Take k = 20 W/mK, ρ = 70 $\mu\Omega$ cm, h = 4 kW/m²K. 7+7=14
 - (b) A 12 mm diameter mild steel (k = 42 W/mk) sphere is exposed to air at 27° C. Determine the time required to cool the sphere from 550°C to 100°C.

Take $h = 114 \text{ W/m}^2\text{K}$, $\rho = 7800 \text{ kg/m}^3$, $\alpha = 0.0043 \text{ m}^2/\text{hr}$, C = 475 J/kgK.

- 4. (a) Derive the relationship between effectiveness and NTU for a counterflow Heat exchanger.
 7+7=14
 - (b) A single pass counterflow shell and tube heat exchanger is used to heat water from 20° C to 80° C at the rate of 5 kg/s using oil entering the shell side at 140° C and leaving at 90°C. Calculate the heat transfer surface required. Take U=400 W/m² K.
- 5. (a) Explain the followings :

6+8=14

- (i) Emissivity
- (ii) Planck's law
- (iii) Wien's law of Radiation

BIME-034

2

- (b) Two large parallel planes with emissivities of 0.3 and 0.5 are maintained at temperatures at 527°C and 27°C respectively. A radiation shield ($\epsilon_e = 0.05$) is placed between them. Determine the radiation heat transfer between them with shield and without shield.
- 6. (a) Show by dimensional Analysis for Forced Convection $Nu = \phi(Re, Pr)$ 7+7=14
 - (b) A vertical cylinder 1.5 m high and 180 mm diameter is maintained at 100°C in an atmospheric environment of 20°C. Calculate heat loss by Free convection from the surface of the cylinder. Use relation

Nu=0.10(Gr Pr)
$$\frac{1}{3}$$

Take properties of air at mean temperature: $\rho = 1.06 \text{ kg/m}^3$, $\gamma = 18.97 \times 10^{-6} \text{ m}^2/\text{s}$ Cp = 1.004 kJ/kgK, k = 0.142 kJ/hr mK.

7. Write short notes on the following :

5+4+5=14

- (a) Film pool boiling
- (b) Thermal boundary layer
- (c) Lumped heat system

BIME-034