B.Tech. MECHANICAL ENGINEERING

(BTMEVI)

Term-End Examination

June, 2014
BIME-034 : HEAT AND MASS TRANSFER

Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note: Attempt any five questions. Assume missing data suitably, if any. Use of scientific calculator is permitted. Use of Heat and Mass transfer data book permitted.

1. (a) A wall thickness L is made of material whose thermal conductivity varies with temperature as follows : $\mathrm{K}=\mathrm{K}_{0} \mathrm{~T}^{2}$. Find the expression for steady state conduction through wall/ m^{2} and mean thermal conductivity if two surfaces are maintained at temperatures T_{1} and T_{2}.

$$
6+8=14
$$

(b) A reactor's wall 320 mm thick is made up of an inner layer of Fire brick ($k=0.84 \mathrm{~W} / \mathrm{mK}$) covered with a layer of insulation ($\mathrm{k}=0.16 \mathrm{~W} / \mathrm{mK}$). The reactor operates at a temperature of $1350^{\circ} \mathrm{C}$ and the ambient temperature is $25^{\circ} \mathrm{C}$. Determine the thickness of insulation which gives minimum heat loss and also calculate the heat loss presuming that insulating material has a maximum temperature of $1200^{\circ} \mathrm{C}$.
2. (a) Derive the expression for temperature distribution and heat flow through spherical system.

$$
7+7=14
$$

(b) Derive the expression for temperature distribution for short fin with end insulated.
3. (a) A stainless steel wire length 2 m and diameter 2.5 mm is submerged in a fluid at $45^{\circ} \mathrm{C}$ and an electric current of 300 A passes through it. Determine the temperature of the wire at the centre and at the surface of the wire. Take $\mathrm{k}=20 \mathrm{~W} / \mathrm{mK}, \rho=70 \mu \Omega \mathrm{~cm}$, $\mathrm{h}=4 \mathrm{~kW} / \mathrm{m}^{2} \mathrm{~K}$.

$$
7+7=14
$$

(b) A 12 mm diameter mild steel $(\mathrm{k}=42 \mathrm{~W} / \mathrm{mk})$ sphere is exposed to air at $27^{\circ} \mathrm{C}$. Determine the time required to cool the sphere from $550^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
Take $\mathrm{h}=114 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \rho=7800 \mathrm{~kg} / \mathrm{m}^{3}$, $\alpha=0.0043 \mathrm{~m}^{2} / \mathrm{hr}, \mathrm{C}=475 \mathrm{~J} / \mathrm{kgK}$.
4. (a) Derive the relationship between effectiveness and NTU for a counterflow Heat exchanger.
(b) A single pass counterflow shell and tube heat exchanger is used to heat water from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ at the rate of $5 \mathrm{~kg} / \mathrm{s}$ using oil entering the shell side at $140^{\circ} \mathrm{C}$ and leaving at $90^{\circ} \mathrm{C}$. Calculate the heat transfer surface required. Take $\mathrm{U}=400 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
5. (a) Explain the followings :
(i) Emissivity
(ii) Planck's law
(iii) Wien's law of Radiation
(b) Two large parallel planes with emissivities of 0.3 and 0.5 are maintained at temperatures at $527^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ respectively. A radiation shield $\left(\epsilon_{\mathrm{e}}=0.05\right)$ is placed between them. Determine the radiation heat transfer between them with shield and without shield.
6. (a) Show by dimensional Analysis for Forced Convection
$\mathrm{Nu}=\phi(\operatorname{Re}, \mathrm{Pr})$ $7+7=14$
(b) A vertical cylinder 1.5 m high and 180 mm diameter is maintained at $100^{\circ} \mathrm{C}$ in an atmospheric environment of $20^{\circ} \mathrm{C}$. Calculate heat loss by Free convection from the surface of the cylinder. Use relation

$$
\mathrm{Nu}=0.10(\mathrm{Gr} \operatorname{Pr})^{\frac{1}{3}}
$$

Take properties of air at mean temperature:
$\rho=1.06 \mathrm{~kg} / \mathrm{m}^{3}, \gamma=18.97 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{Cp}=1.004 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{k}=0.142 \mathrm{~kJ} / \mathrm{hr} \mathrm{mK}$.
7. Write short notes on the following :

$$
5+4+5=14
$$

(a) Film pool boiling
(b) Thermal boundary layer
(c) Lumped heat system

