DIPLOMA VIEP MECHANICAL ENGINEERING (DMEVI)

Term-End Examination

June, 2014

BIME-021 : MECHANICS OF MATERIALS

Time : 2 hours
Maximum Marks : 70
Note: Answer five questions in all. Question No. 1 is compulsory.

1. Choose the correct answer from the given four alternatives.
(a) A Steel bar 100 mm long is subjected to a tensile stress σ. If change in length of bar is 0.05 mm , what is the value of σ ? $\mathrm{E}=200 \mathrm{GPa}$.
(i) 200 MPa (ii) 100 MPa (iii) 80 MPa (iv) None of these
(b) Principle stresses at a point are +100 MPa and -100 MPa , what is the maximum shear stress at the point?
(i) 100 MPa
(ii) 50 MPa
(iii) Zero
(iv) None of these
(c) E for a material is 208 GPa and $\nu=0.3$. What is modulus of rigidity G ?
(i) 160 GPa
(ii) 104 GPa
(iii) 80 GPa
(iv) 78 GPa
(d) For a material $E=100 \mathrm{GPa}$ and $\mathrm{G}=37.5 \mathrm{GPa}$, what is Poisson's ratio v ?
(i) 0.25
(ii) 0.30
(iii) 0.33
(iv) 0.35
(e) A mild steel beam is subjected to a bending moment such that a stress of 100 MPa is developed in a layer at a distance of 10 cm from neutral layer. If $\mathrm{E}=200 \mathrm{GPa}$. What is the radius of curvature of beam?
(i) 400 m
(iii) 100 m
(ii) 200 m

The hoop stress is also known as :
(i) Longitudinal stress
(ii) Circumferential stress
(iii) Bending stress
(iv) Compressive stress
(g) The strain energy stored per unit volume in a cube subjected to a stress intensity σ on its all sides with bulk modulus k is :
(i) $\frac{\sigma}{2 \mathrm{k}}$
(ii) $\frac{\sigma}{2 \mathrm{k}^{2}}$
(iii) $\frac{\sigma^{2}}{2 k}$
(iv) $\frac{\sigma^{2}}{\mathrm{k}^{2}}$
2. A steeped circular bar 150 mm long with 14 diameters $20 \mathrm{~mm}, 15 \mathrm{~mm}$ and 10 mm along lengths $A B=40 \mathrm{~mm}, \mathrm{BC}=45 \mathrm{~mm}, C D=65 \mathrm{~mm}$ respectively is subjected to various forces at sections

Figure 1
A, B, C and D as shown in Figure 1. Determine the change in length of bar if $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$.
3. Figure 2 shows a triangular element of a stressed body. Normal and shear stresses on two perpendicular planes $B C$ and $A C$ are as shown in the figure. Determine normal and shear stresses on inclined plane $A B$, inclined at an angle of 30° to the plane $B C$.

Figure 2
4. A bar 25 mm diameter is subjected to a pull of 60 kN . The measured extension over a gauge length of 250 mm is 0.15 mm and change in diameter is 0.004 mm . Calculate the modulus of elasticity, modulus of rigidity and Poisson's ratio.
5. A beam of circular section of diameter d is supported over a span of 8 m . A load of 2 kN is applied at a distance of 3 m from one end. Determine diameter of the section if maximum stress developed in beam section is 90 MPa .
6. The diameter of a shaft is 20 cm . Find the safe maximum torque which can be transmitted by the shaft if the permissible shear stress in the shaft material be $4000 \mathrm{~N} / \mathrm{cm}^{2}$ and permissible angle of twist is 0.2 degree per meter length.
Take $G=80 \times 10^{5} \mathrm{~N} / \mathrm{cm}^{2}$, if the shaft rotates at 320 rpm , what maximum power can be transmitted by the shaft ?

