504

 \bigcirc

BIME-015

B.Tech. MECHANICAL ENGINEERING

Term-End Examination

June, 2014

BIME-015 : REFRIGERATION AND AIR CONDITIONING

Time :	3 hour	Maximum Marks : 70			
Note :	(i)	Attempt any fiv e questions. Non-programmable scientific calculator is permitted .			
	(ii)				
	(iii)	Use of psychometric charts, steam tables, mollier diagrams, refrigeration and air conditioning tables and charts is permitted.			
1 . (a	a) Bi Pi Re Pe	rief about Engine, Refrigerator and Heat 7 ump. Also mention about unit of efrigeration and Coefficient of erformance (C.O.P.).			
(ł	b) A 24 sp at	A reversed Carnot cycle is used to deliver 24000 kcal/min. to heat the conditioned space. The heat is taken from atmosphere at 10°C and supplied to the conditioned			

- space at 25°C. Find the following :(i) H.P. required to run the system.
- (ii) If the same quantity of heat is supplied by electric heaters find the consumption of the electric energy in kW and H.P.
- 2. (a) Differentiate between vortex tube 5 refrigeration and thermo-electric refrigeration.

BIME-015

1

(b) A reversed Carnot cycle is used for cooling in summer maintained at 5°C when the ambient temperature is 40°C. The same cycle is used for heating in winter at 55°C, when the ambient temperature is 15°C. Assuming 5°C temperature difference in the heat exchanger that exchanges heat with the surrounding, find :

9

- (i) The C.O.P. for cooling and heating cycles.
- (ii) If the water at 30°C is used as cooling medium with 3°C temp. difference for summer air conditioning, what will be the Carnot C.O.P.
- (iii) The power consumption per ton of refrigeration in each case.Assume, the air and water temperature remain constant during heat transfer.
- 3. A food storage requires a refrigeration system of 12 tons capacity at an evaporator temperature of 10°C and condenser temp. of 25°C. The refrigerant NH_3 is sub cooled by 5°C before passing through throttle valve. The vapour leaving the evaporator coil is 0.97 dry. Find the co-efficient of performance and H.P. required.

Tomoroturo	Liquid			Vapour		
Temperature	h _f	s _f	c _p	hg	s_g	c _p
25	128.1	1.0975	1.1	406.8	2.0334	0.67
- 10	89.6	0.9593	-	398.7	2.4362	-

The properties of NH₃ are given below :

- Draw the refrigeration cycle on T-S diagram when 14 the refrigerant is dry and saturated at the end of compression and find an expression for the C.O.P. in terms of :
 - (a) Temperature and entropies
 - (b) Enthalpy
- 5. Data for an absorber of an Ammonia Absorption 14 Refrigeration System is given below :
 - (a) Evaporator Pressure = 2.5 kgf/cm^2 .
 - (b) Temperator Ammonia leaving the evaporator and entering the absorber is -10° C.
 - (c) Absorber Pressure = 2.5 kg/cm^2 .
 - (d) Weak aqua enters the absorber at 50°C with weight concentration of 0.25.
 - (e) Strong aqua leaves the absorber at 35°C with weight concentration of 0.33.
 - (f) Anhydrous ammonia circulated through system=8.5 kg/min.

Neglect the water vapour returning from evaporator and assume specific heat of solution as 1.5 kcal/kg–°C and liquid heat at 0°C as 100 kcal/kg.

Calculate the amount of heat to be removed per minute from the absorber in kcal.

6. (a) Define relative humidity, specific humidity **5** and dew point temperature and describe a theoretical method for determining their values.

BIME-015

(b) 100 cu. m. of air per minute at 30°C DBT and 60% Relative Humidity is cooled to 20°C DBT by passing through a cooling coil. Find :

9

- (i) The capacity of cooling coil in tons of refrigeration and
- (ii) Relative humidity of air coming out air and its wet bulb temperature
- 7. (a) What are requirements of Comfort Air 5 Conditioning ?
 - (b) A spray cooling coil is chosen to operate 9 under the following conditions :
 - (i) Air inlet conditions $\rightarrow 28^{\circ}$ C DBT and 21°C WBT
 - (ii) Air outlet conditions $\rightarrow 10^{\circ}$ C DBT and 6°C WBT
 - (iii) Total amount of airflow = $2000 \text{ m}^3/\text{min}$
 - (iv) The chilled water inlet and outlet temperatures are 7°C and 12°C respectively.

Find the following :

- (A) The cooling load on the coil.
- (B) Water flow rate through the coil.

BIME-015