	B.Tech. Mechanical Engineering / B.Tec
-	Engineering (BTMEVI/BTCLEVI)
-	Term-End Examination
-	June, 2014
	BIME-004 : FLUID MECHANICS

Time : 3 hours

Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of non programmable scientific calculator is allowed.

1. (a) Derive an expression for capillary rise or fall 7 when a small diameter tube dipped into a liquid.
(b) Explain the different kinds of fluids using 7 neat sketch of Rheogram with one example each.
2. (a) Differentiate between Eulerian and 7 Lagrangian approach in detail.
(b) Derive the continuity equation in cartesian 7 co-ordinates.
3. (a) Define centre of Buoyancy and Metacentre 7 with figure in detail.
(b) A square lamina of 1 m side is kept in the 7 water being diagonal vertical and its vertex is 1 m below the free water surface. Find the total pressure force and the position of centre of pressure.
4. (a) Distinguish between Notches and Weirs in detail with neat sketchs.
(b) Explain the method for the determination 7 of coefficient of velocity and coefficient of discharge experimently.
5. Using Buckingham's π-theorem, show that the 14 velocity through a circular orifice is given by :

$$
\mathrm{V}=\sqrt{2 \mathrm{gH}} f \mathrm{u}\left[\frac{\mathrm{D}}{\mathrm{H}}, \frac{\rho \mathrm{VH}}{\mu}\right]
$$

Where, $\quad \mathrm{H}=$ Head causing flow
$\mathrm{D}=$ Diameter of the orifice
$\mu=$ Coefficient of viscosity
$\rho=$ Mass density
$\mathrm{g}=$ Acceleration due to gravity
6. (a) For a viscous flow through a circular pipe prove that the kinetic energy correction factor is equal to 2 .
(b) An oil of specific gravity 0.9 and viscosity 7 10 poise is flowing through a pipe of diameter 110 mm . The velocity at the centre is $2 \mathrm{~m} / \mathrm{s}$. Find the pressure gradient in the direction of flow and shear at the pipe wall.
7. (a) $\begin{array}{lll}\text { Discuss the effect of pressure gradient on } & 7 \\ \text { boundary layer thickness with diagram. } & \\ \text { (b) } \begin{array}{l}\text { A passanger ship of } 300 \mathrm{~m} \text { length and } 12 \mathrm{~m} \\ \text { draft is travelling at } 45 \mathrm{~km} / \mathrm{hr} \text {. Determine }\end{array} & 7 \\ \text { the total friction drag. }\end{array}$
8. Answer the followings :
$3.5 \times 4=14$
(a) Describe the use and limitations of the flow nets.
(b) Derive Bernoulli's equation from Euler equation of motion.
(c) What is syphone ? Where it is used ?
(d) Explain the differences between minor loss and major loss.

