B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

DTTA Term-End Examination June, 2014

BIEEE-009 : DIGITAL CONTROL SYSTEM DESIGN

Time: 3 hours

Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks.

1. Obtain the inverse Z-transform of 10

$$
X(z)=\frac{z^{-2}}{\left(1-z^{-1}\right)^{3}}
$$

2. Discuss about the frequency response characteristic of the Zero-Order Hold (ZOH).10
3. Find the Z -transform of

$$
X(s)=\frac{1}{s(s+1)}
$$

Also define z-domain-pulse transfer function. 10
4. A discrete time system is described by transfer function

$$
G(z)=\frac{Y(z)}{R(z)}=\frac{1}{z^{2}+a_{1} z+a_{2}}, a_{1}=\frac{-3}{4}, a_{2}=\frac{1}{8}
$$

Find the response $Y(K)$, to the input
(a) Impulse signal
(b) Unit step.
5. Using Jury's stability criterion check if all the roots of the following characteristic equation lie within the unit circle

$$
z^{3}-1 \cdot 3 z^{2}-0 \cdot 08 z+0 \cdot 24=0
$$

6. A PID controller is described by the following relation between input $e(t)$ and output $u(t)$.

$$
\mathrm{U}(\mathrm{~s})=\mathrm{K}_{\mathrm{c}}\left[1+\frac{1}{\mathrm{~T}_{\mathrm{I}} \mathrm{~s}}+\mathrm{T}_{\mathrm{D}} \mathrm{~s}\right] \mathrm{E}(\mathrm{~s})
$$

Derive the PID algorithm using s-plane to z-plane maps bilinear transformation for integration and backward difference for the derivatives.
7. Explain the design procedure in w-plane for digital control system.
8. Obtain state-space representation of the following pulse-transfer function system in diagonal canonical form

$$
Y(z)=\frac{1+6 z^{-1}+8 z^{-2}}{1+4 z^{-1}+3 z^{-2}}
$$

9. Define Cayley - Hamilton theorem. Evaluate state transition matrix $\phi(\mathrm{k})$ for a given system

$$
\dot{\mathrm{x}}=A x \text { where } A=\left[\begin{array}{rrr}
0 & -4 & 0 \\
0 & 0 & 4 \\
-4 & -12 & -4
\end{array}\right]
$$

10. Consider the complete state controllable system

$$
\mathrm{X}(\mathrm{~K}+1)=\mathrm{G} \mathrm{X}(\mathrm{~K})+\mathrm{H} \mathrm{U}(\mathrm{~K})
$$

Define the controllability matrix as M,

$$
\mathrm{M}=\left[\mathrm{H}: \mathrm{GH}: \ldots \vdots \mathrm{G}^{\mathrm{n}-1} \mathrm{H}\right]
$$

Show that

$$
M^{-1} G M=\left[\begin{array}{cccccc}
0 & 0 & \ldots & 0 & \ldots & -a_{n} \\
1 & 0 & \ldots & 0 & \ldots & -a_{n-1} \\
0 & 1 & \ldots & 0 & \ldots & -a_{n-2} \\
\vdots & \vdots & & \vdots & & \vdots \\
0 & 0 & \ldots & 1 & \ldots & -a_{1}
\end{array}\right]
$$

where $a_{1}, a_{2}, a_{3}, \ldots ., a_{n}$ are the coefficients of characteristic equation

$$
\begin{equation*}
|z I-G|=z^{n}+a_{1} z^{n-1}+\ldots . a_{n-1} z+a_{n} \tag{10}
\end{equation*}
$$

