BIELE-007

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI) Term-End Examination June, 2014

BIELE-007 : NANO-ELECTRONICS

Time : 3 hours		Maximum Marks : 70	
Note :	Attempt any seven equal marks.	questions. All questions carry	
1 De	seriho quantum wire	as and quantum dats with	

1.	their structural detail and applications.	10
2.	What are the short-channel effects in MOSFET ? Explain the MOSFET device performance with I-V characteristics at nanoscale.	10
3.	What is lithography ? Explain the challenges faced to implement lithography process at nanoscale for MOSFET design.	10
4.	Explain the strained-Si n-MOS transistor with schematic diagram. State the major advantages of strained-Si based MOS transistor.	10
5.	Explain the structure of resonant tunneling diode with its high frequency performance in detail.	10
BIE	LE-007 1 P	.T.O.

- Describe the high speed Si-Ge hetero-structure bipolar transistor and also explain the trade-off between its current gain and speed. 10
- 7. Explain the structural detail of carbon nano-field effect transistor with its I-V characteristics and usefulness in nanotechnology.
- B. Draw the structure of spin polarised FET and discuss the difference between I-V characteristics of spin polarised FET with n-channel MOSFET. 10
- 9. Discuss the importance of nano-electronics and explain the 'top down' and 'bottom up' approaches of designing nano-electronics devices. 10
- 10. Explain the Coulomb Blockade theory in context of single electron transistor with equivalent representation of its I-V characteristics.
 10

10

2