No. of Printed Pages: 3

BIELE-002

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

00565

June, 2014

BIELE-002: MICROELECTRONICS TECHNOLOGY

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. Assume suitable missing data, if any.

- 1. (a) Explain the float zone process of crystal growth. How is it different from CZ-technique?
 - (b) What is silicon shaping? How are ingots evaluated? $2\times 5=10$
- Explain the basic transport mechanism and reaction kinetics of vapour-phase epitaxy process showing its various reactors.
- **3.** (a) What is the difference between dry oxidation and wet oxidation?
 - (b) Show that 0.44 d₀ thickness of Si is consumed, when SiO₂ is grown over Si. $2\times5=10$

- **4.** (a) What is the difference between positive and negative photo resist?
 - (b) Discus electron beam lithography process with suitable diagram. $2\times5=10$
- **5.** (a) What is the need of plasma in etching process? How is it created?
 - (b) Explain the various properties of etching process. $2\times5=10$
- 6. What is diffusion? Explain its transport mechanism by deriving the expressions of concentration gradients for the erfc and Gaussian distributions.
- 7. (a) Explain the basic theory of ion implantation.
 - (b) What is annealing? What are the types of annealing used? $2\times 5=10$
- 8. (a) Calculate the RC time constant for a 1 cm long doped poly-silicon inter-connection runner on 1 µm thick SiO₂. The poly-silicon has a thickness of 5000 Å and a resistivity of 1000 µ Ω -cm, where $\epsilon_{Si} = 11.7\epsilon_{o}$ and $\epsilon_{SiO_2} = 3.97~\epsilon_{o}$.
 - (b) What is the difference between PVD and CVD? $2\times 5=10$

- 9. (a) Draw the fabrication process sequence of CMOS IC using p-tub, n-tub and twin-tub process.
 - (b) What is latch-up in CMOS IC's? How can it be avoided? $2\times5=10$
- 10. Write short notes on any *two* of the following: $2 \times 5 = 10$
 - (a) RIBE
 - (b) Silicon on Sapphire
 - (c) Electromigration