B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)
 Term-End Examination
 00565
 June, 2014

BIELE-002 : MICROELECTRONICS TECHNOLOGY

Time: 3 hours Maximum Marks : 70

Note: Attempt any seven questions. Assume suitable missing data, if any.

1. (a) Explain the float zone process of crystal growth. How is it different from CZ-technique?
(b) What is silicon shaping? How are ingots evaluated?
2. Explain the basic transport mechanism and reaction kinetics of vapour-phase epitaxy process showing its various reactors.
3. (a) What is the difference between dry oxidation and wet oxidation?
(b) Show that $0.44 d_{0}$ thickness of Si is consumed, when SiO_{2} is grown over $\mathrm{Si} .2 \times 5=10$

BIELE-002 1 P.T.O.
4. (a) What is the difference between positive and negative photo resist?
(b) Discus electron beam lithography process with suitable diagram.

$$
2 \times 5=10
$$

5. (a) What is the need of plasma in etching process? How is it created?
(b) Explain the various properties of etching process.

$$
2 \times 5=10
$$

6. What is diffusion ? Explain its transport mechanism by deriving the expressions of concentration gradients for the erfc and Gaussian distributions.
7. (a) Explain the basic theory of ion implantation.
(b) What is annealing ? What are the types of annealing used? $2 \times 5=10$
8. (a) Calculate the RC time constant for a 1 cm long doped poly-silicon inter-connection runner on $1 \mu \mathrm{~m}$ thick SiO_{2}. The poly-silicon has a thickness of $5000 \AA$ and a resistivity of $1000 \mu \Omega-\mathrm{cm}$, where $\varepsilon_{S i}=11 \cdot 7 \varepsilon_{0}$ and $\varepsilon_{\mathrm{SiO}_{2}}=3.97 \varepsilon_{\mathrm{o}}$.
(b) What is the difference between PVD and CVD?

$$
2 \times 5=10
$$

9. (a) Draw the fabrication process sequence of CMOS IC using p-tub, n-tub and twin-tub process.
(b) What is latch-up in CMOS IC's? How can it be avoided?

$$
2 \times 5=10
$$

10. Write short notes on any two of the following : $2 \times 5=10$
(a) RIBE
(b) Silicon on Sapphire
(c) Electromigration
