1777

No. of Printed Pages: 7

BIEL-028

DIPLOMA – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)/ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING (ACECVI)

Term-End Examination

June, 2014

BIEL-028 : CIRCUITS AND NETWORKS

Time : 2 hours

Maximum Marks: 70

- Note: Attempt five questions. Question no. 1 is compulsory. Use of scientific calculator is permitted.
- **1.** Select the correct answer :

 $7 \times 2 = 14$

P.T.O.

- (a) One sine wave has a period of 2 ms, another has a period of 5 ms, and another has a period of 10 ms. Which sine wave is changing at a faster rate ?
 - (i) sine wave with period 2 ms
 - (ii) sine wave with period 5 ms
 - (iii) sine wave with period 10 ms
 - (iv) All are at the same rate

BIEL-028

- (b) What is the phase angle between the inductor current and the applied voltage in a parallel RL circuit ?
 - (i) 0°
 - (ii) 45°
 - (iii) 90°
 - (iv) 30°
- (c) The superposition theorem is valid
 - (i) only for a.c. circuits
 - (ii) only for d.c. circuits
 - (iii) for both a.c. and d.c. circuits
 - (iv) None of the above
- (d) What is the total reactance of a series RLC circuit at resonance ?
 - (i) Equal to X_L
 - (ii) Equal to X_C
 - (iii) Equal to R
 - (iv) Zero

BIEL-028

(e)

- The resultant voltage in a closed balanced delta circuit is given by
 - (i) three times the phase voltage
 - (ii) $\sqrt{3}$ times the phase voltage
 - (iii) zero
 - (iv) $\frac{1}{3}$ times the phase voltage
- (f) Transient behaviour occurs in any circuit when
 - (i) there are sudden changes of voltage
 - (ii) the voltage source is shorted
 - (iii) the circuit is connected or disconnected from the supply
 - (iv) All of the above happen
- (g) The Laplace transform of the first derivative of a function f(t) is
 - (i) $\frac{\mathbf{F}(\mathbf{s})}{\mathbf{s}}$
 - (ii) $\mathbf{sF}(\mathbf{s}) \mathbf{f}(\mathbf{0})$
 - (iii) F(s) f(0)
 - (iv) **f**(0)

BIEL-028

P.T.O.

2. (a) Find the current in the 10 Ω resistance. Also calculate the value of V_1 and V_s in the circuit.

(b) Find the voltage across the 2 Ω resistor, by using the superposition theorem. $2 \times 7=14$

BIEL-028

3. (a)

For the circuit shown, determine the frequency at which the circuit resonates. Also find the voltage across the inductor at resonance and the Q factor of the circuit.

100 V_{rms}

(b) Obtain the expression for the frequency at which the maximum voltage occurs across the capacitor in series resonance circuit in terms of Q factor and resonance frequency. $2\times7=14$

(a)

) Determine the voltage across $(2 + j5) \Omega$ impedance as shown in fig. by using superposition theorem.

5

BIEL-028

P.T.O.

(b) Transform the circuit shown in fig. to the s-domain and determine the Laplace impedance Z(s). $2 \times 7 = 14$ 3Ω

- 5. (a) Design a low pass filter (T-sections) having a cut-off frequency of 2 kHz to operate with a terminated load resistance of 500 Ω .
 - (b) Design a π -type attenuator to give 20 dB attenuation and to have a characteristic impedance of 100 Ω . $2\times7=14$
- 6. (a) Explain the necessary conditions for the transfer functions.
 - (b) For the network shown in fig. obtain the transfer functions $G_{21}(s)$, $Z_{21}(s)$ and driving point impedance $Z_{11}(s)$. $2\times7=14$

BIEL-028

- 7. (a) Express Z-parameters in terms of Y-parameters.
 - (b) Derive the condition for symmetry in terms of Y (admittance) parameters. $2\times7=14$
- 8. Write short notes on any *two* parts from each section (a) and (b):
 - (a) (i) Image impedance
 - (ii) Transient state
 - (iii) Phasor notations

 $2 \times 3\frac{1}{2} = 7$

- (b) (i) Cascade connection in Two-port network
 - (ii) Ladder network
 - (iii) Gate function

 $2 \times 3\frac{1}{2} = 7$

BIEL-028

1,000