DIPLOMA - VIEP - COMPUTER SCIENCE AND ENGINEERING (DCSVI)

Term-End Examination
June, 2014

BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time: 2 hours
Maximum Marks : 70
Note: Attempt any five questions. Question no. 1 is compulsory. Calculator is allowed. Each question carries equal marks.

1. (a) The Regula-Falsi method never fails. (True/False) $7 \times 2=14$
(b) Gauss-Jordan method is used to solve a homogeneous system of linear equations. (True/False)
(c) Numerical differentiation is assumed as a weak concept in numerical analysis. (True/False)
(d) Write the order of convergence of secant method.
(e) Define backward difference operator.
(f) What is the advantage of Newton's interpolation over Lagrange's interpolation?
(g) Write Trapezoidal rule for solving a definite integral.
2. Solve $\mathrm{xe}^{\mathrm{x}}-1=0$ correct to three decimal places using

$$
7+7=14
$$

(a) Bisection method.
(b) Newton-Raphson method.
3. Solve $20 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=17, \quad 3 \mathrm{x}+2 \mathrm{y}-\mathrm{z}=-18$, $2 \mathrm{x}-3 \mathrm{y}+20 \mathrm{z}=25$, using $7+7=14$
(a) Gauss elimination method.
(b) Gauss-Seidel iteration method.
4. Find the Lagrange's and Newton's interpolating polynomials passing through (0,2), (1,3), (2, 12) and (5, 147).
5. Derive Simpson's $3 / 8^{\text {th }}$ rule to solve the integral $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$.
6. Find the least square fit $y=a+b x+c x^{2}$ for the data

x	-3	-1	1	3
y	15	5	1	5

7. Using Runge-Kutta method of order 4, find y for $x=0 \cdot 3$, given that $\frac{d y}{d x}=x y+y^{2}, y(0)=1$ (Take step size $h=0 \cdot 1$). 14
8. Write short notes on any four of the following : $4 \times 3 \frac{1}{2}=14$
(a) Golden section search
(b) Minimization using derivatives
(c) Numerical differentiation
(d) Taylor's series method
(e) Round-off error
(f) Truncation error
