No. of Printed Pages : 3

BICS-033

DIPLOMA – VIEP – COMPUTER SCIENCE AND ENGINEERING (DCSVI)

Term-End Examination

00557

June, 2014

BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time : 2 hours

Maximum Marks : 70

Note: Attempt any five questions. Question no. 1 is compulsory. Calculator is allowed. Each question carries equal marks.

- 1. (a) The Regula-Falsi method never fails. (True/False) $7 \times 2=14$
 - (b) Gauss-Jordan method is used to solve a homogeneous system of linear equations. (True/False)
 - (c) Numerical differentiation is assumed as a weak concept in numerical analysis. (True/False)
 - (d) Write the order of convergence of secant method.
 - (e) Define backward difference operator.
 - (f) What is the advantage of Newton's interpolation over Lagrange's interpolation ?
 - (g) Write Trapezoidal rule for solving a definite integral.

BICS-033

P.T.O.

1

- 2. Solve $xe^x 1 = 0$ correct to three decimal places using 7+7=14
 - (a) Bisection method.
 - (b) Newton-Raphson method.
- **3.** Solve 20x + y 2z = 17, 3x + 2y z = -18, 2x - 3y + 20z = 25, using 7+7=14
 - (a) Gauss elimination method.
 - (b) Gauss-Seidel iteration method.
- 4. Find the Lagrange's and Newton's interpolating polynomials passing through (0, 2), (1, 3), (2, 12) and (5, 147).
 7+7
- 5. Derive Simpson's $3/8^{\text{th}}$ rule to solve the integral $\int_{0}^{1} \frac{dx}{1+x^{2}}.$ 14

6. Find the least square fit $y = a + bx + cx^2$ for the data 14

x	- 3	- 1	1	3
у	15	5	1	5

7. Using Runge-Kutta method of order 4, find y for x = 0.3, given that $\frac{dy}{dx} = xy + y^2$, y(0) = 1 (Take step size h = 0.1). 14

BICS-033

- 8. Write short notes on any *four* of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Golden section search
 - (b) Minimization using derivatives
 - (c) Numerical differentiation
 - (d) Taylor's series method
 - (e) Round-off error
 - (f) Truncation error