DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/ DIPLOMA IN ELECTRICAL AND MECHANICAL ENGINEERING (DEME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

Term-End Examination

June, 2014

BET-021 : MATHEMATICS-II

Time: 2 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any four questions out of the remaining questions. Use of scientific calculator is permitted.

1. Attempt any seven of the following :
$2 \times 7=14$
(a) If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 1\end{array}\right], B=\left[\begin{array}{rr}0 & 0 \\ -1 & 1 \\ 2 & 3\end{array}\right]$, find $A B$.
(b) Find $\frac{d y}{d x}$ if $x^{3}+y^{3}-3 a x y=0$.
(c) Find $\frac{d y}{d x}$ if $y=\tan ^{-1} \frac{2 x}{1-x^{2}}$.
(d) Find $\int x^{2} \log x d x$.
(e) Find $\int_{1}^{2} \frac{2 x}{1+x^{2}} d x$.
(f) A particle is moving in a straight line according to the formula
$s=t^{3}-9 t^{2}+3 t+1$ where s is measured in metres and t in seconds. Find the velocity at the time when $t=3$ seconds.
(g) Prove that the function

$$
f(x)=x^{3}-3 x^{2}+3 x-100
$$

is an increasing function on R.
(h) Find the equation of the normal to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ at any point ($\mathrm{x}_{1}, \mathrm{y}_{1}$).
(i) Find the median of the following observations :

$$
3,5,8,9,12,15,16,18,19,23
$$

(j) Find the principal argument of the complex number $\frac{(1+i)^{2}}{1-i}$.
2. (a) Show that

$$
\left|\begin{array}{ccc}
x+a & b & c \\
a & x+b & c \\
a & b & x+c
\end{array}\right|=x^{2}(x+a+b+c)
$$

(b) Compute the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-3 & 5 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

3. (a) Evaluate :

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{2 x}
$$

(b) If $f(x)=\frac{\sin x}{x}+\cos x, x \neq 0$

$$
=2 \quad, \mathbf{x}=0
$$

show that f is continuous at $x=0$.
4. (a) If $y=\sqrt{\frac{1-x}{1+x}}$, prove that

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d y}{d x}+y=0 \tag{5}
\end{equation*}
$$

(b) If $y=\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right)$, find $\frac{d y}{d x}$.
(c) Express $\frac{1+2 i}{1-3 i}$ in the form of

$$
r(\cos \theta+i \sin \theta) .
$$

5. (a) Evaluate :

$$
\begin{equation*}
I=\int \sin ^{-1} \sqrt{x} d x \tag{7}
\end{equation*}
$$

(b) Evaluate :

$$
\begin{equation*}
I=\int_{-2}^{1}|2 x+1| d x \tag{7}
\end{equation*}
$$

6. (a) Show that $f(x)=\sin x(1+\cos x)$ has a maximum value at $\mathrm{x}=\frac{\pi}{3}$.
(b) If $f(x)=x^{2}+4$ on $[-2,2]$, can Rolle's theorem be applied to $f(x)$? Find c if it can be applied.
(c) Find the intervals in which the function $f(x)=x^{4}-4 x^{3}+4 x^{2}+15$ is increasing or decreasing.
7. (a) Find the mean and standard deviation of first n natural numbers.
(b) The weekly observations of cost of living index in a certain city for a particular year are

Cost of living index	Number of weeks
$140-150$	5
$150-160$	10
$160-170$	20
$170-180$	9
$180-190$	6
$190-200$	2

Find the average weekly cost of living.

