No. of Printed Pages: 4

DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/ DIPLOMA IN ELECTRICAL AND MECHANICAL ENGINEERING (DEME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

Term-End Examination

01268

June, 2014

BET-021 : MATHEMATICS-II

Time : 2 hours

Maximum Marks : 70

- **Note :** Question no. 1 is **compulsory**. Attempt any **four** questions out of the remaining questions. Use of scientific calculator is permitted.
- 1. Attempt any *seven* of the following : $2 \times 7 = 14$ (a) If $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ -1 & 1 \\ 2 & 3 \end{bmatrix}$, find AB. (b) Find $\frac{dy}{dx}$ if $x^3 + y^3 - 3axy = 0$.
 - dx dx 1 2x
 - (c) Find $\frac{dy}{dx}$ if $y = \tan^{-1} \frac{2x}{1-x^2}$.
 - (d) Find $\int x^2 \log x \, dx$.

BET-021

P.T.O.

BET-021

(e) Find
$$\int_{1}^{2} \frac{2x}{1+x^2} dx$$
.

- (f) A particle is moving in a straight line according to the formula $s = t^3 - 9t^2 + 3t + 1$ where s is measured in metres and t in seconds. Find the velocity at the time when t = 3 seconds.
- (g) Prove that the function $f(x) = x^3 - 3x^2 + 3x - 100$ is an increasing function on R.
- (h) Find the equation of the normal to the parabola $y^2 = 4ax$ at any point (x_1, y_1) .
- (i) Find the median of the following observations :

3, 5, 8, 9, 12, 15, 16, 18, 19, 23

- (j) Find the principal argument of the complex number $\frac{(1+i)^2}{1-i}$.
- 2. (a) Show that

$$\begin{vmatrix} \mathbf{x} + \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a} & \mathbf{x} + \mathbf{b} & \mathbf{c} \\ \mathbf{a} & \mathbf{b} & \mathbf{x} + \mathbf{c} \end{vmatrix} = \mathbf{x}^2 (\mathbf{x} + \mathbf{a} + \mathbf{b} + \mathbf{c}) \qquad 7$$

BET-021

(b) Compute the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{3} \\ -\mathbf{3} & \mathbf{5} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} \end{bmatrix}.$$

3. (a) Evaluate:

$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{2x}$$
7

(b) If
$$f(x) = \frac{\sin x}{x} + \cos x$$
, $x \neq 0$
= 2 , $x = 0$
show that f is continuous at $x = 0$. 7

4. (a) If
$$y = \sqrt{\frac{1-x}{1+x}}$$
, prove that
 $(1-x^2)\frac{dy}{dx} + y = 0.$ 5

(b) If
$$y = \tan^{-1}\left(\frac{1-\tan x}{1+\tan x}\right)$$
, find $\frac{dy}{dx}$. 4

(c) Express
$$\frac{1+2i}{1-3i}$$
 in the form of
r (cos θ + i sin θ). 5

5. (a) Evaluate :

$$I = \int \sin^{-1} \sqrt{x} \, dx \qquad 7$$

BET-021

P.T.O.

7

3

(b) Evaluate :

$$I = \int_{-2}^{1} |2x + 1| dx$$

6. (a) Show that
$$f(x) = \sin x (1 + \cos x)$$
 has a maximum value at $x = \frac{\pi}{3}$.

- (b) If $f(x) = x^2 + 4$ on [-2, 2], can Rolle's theorem be applied to f(x)? Find c if it can be applied.
- (c) Find the intervals in which the function $f(x) = x^4 - 4x^3 + 4x^2 + 15$ is increasing or decreasing.
- 7. (a) Find the mean and standard deviation of first n natural numbers.
 - (b) The weekly observations of cost of living index in a certain city for a particular year are

Cost of living index	Number of weeks
140 - 150	5
150 - 160	10
160 – 170	20
170 - 180	9
180 – 190	6
190 - 200	2

Find the average weekly cost of living.

7

7

4

5

 $\mathbf{5}$

7