DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/

 DIPLOMA IN ELECTRICAL AND MECHANICAL ENGINEERING (DEME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI
Term-End Examination

02000

June, 2014

BET-011 : MATHEMATICS - I

Time : 2 hours
Maximum Marks : 70
Note: Question number 1 is compulsory. Attempt any four more questions out of the remaining questions numbered 2 to 6. Use of calculator is permitted.

1. Answer any seven of the following :
(a) The smallest positive integer n for which $(1+i)^{2 n}=(1-i)^{2 n}$ is
(i) 4
(ii) 8
(iii) 2
(iv) 12
(b) How many terms are there in the expansion of $\left[(2 x+3 y)^{2}\right]^{5}$?
(i) 9
(ii) 10
(iii) 11
(iv) None of these
(c) In flow chart, what is the meaning of the P ?
(i) Terminal box
(ii) Input box
(iii) Output box
(iv) Connector box
(d) Find the angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}+\hat{k}$.
(e) If $\vec{a}=11 \hat{i}+23 \hat{j}+41 \hat{k}$, then find the value of $\vec{a} \times \vec{a}$.
(f) Write the $5^{\text {th }}$ term in the expansion of $(a-5 b)^{7}$.
(g) Show that $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta$.
(h) Principal value of $\sin ^{-1}(1)$ is
(i) 1
(ii) -1
(iii) $\pi / 2$
(iv) $-\pi / 2$
(i) Find the centre and radius of the circle $2 \mathrm{x}^{2}+2 \mathrm{y}^{2}=18$.
(j) Find the equation of the circle whose centre is ($2,-1$) and which passes through the point $(3,6)$.
2. (a) Find the equation of the circle of radius 5, passing through the origin and having its centre on the y-axis.

4
(b) Find the equation of a parabola having vertex at the origin, y-axis as the axis and passing through ($3,-9$).
(c) Find the equation of the straight line which makes equal intercepts on the axes and passes through the point $(3,-5)$.
3. (a) Show that

$$
\tan ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \theta \sin ^{2} \theta
$$

(b) From a tower 128 m high, the angle of depression of a car is $26^{\circ} 10^{\prime}$. Find how far the car is from the tower.
(c) Show that $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=\frac{\pi}{4}$.
4. (a) If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and
$\vec{b}=2 \hat{i}+3 \hat{j}-5 \hat{k}$, then find $\vec{a} \times \vec{b}$. Further, verify that \vec{a} and $\vec{a} \times \vec{b}$ are perpendicular to each other.
(b) Find the value of α so that the angle between the two vectors $\hat{i}+\hat{k}$ and $\hat{i}-\hat{j}+\alpha \hat{k}$ may be $\left(\frac{\pi}{3}\right)$.
(c) Two vectors $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are such that $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$.
Show that

$$
\begin{equation*}
|\vec{a}|=|\vec{b}| \tag{4}
\end{equation*}
$$

5. (a) The third term of an A.P. is 25 and the tenth term is -3 . Find the first term and the common difference.
(b) Find the sum to n terms of the sequence

$$
1,-1,1,-1, \ldots,(-1)^{\mathrm{n}+1}, \ldots
$$

(c) Find the roots of the equation

$$
(x+1)(x-3)+7=0
$$

6. (a) Find the two middle terms in the expansion

$$
\begin{equation*}
\text { of }\left(x^{3}+\frac{1}{x^{3}}\right)^{7} \tag{4}
\end{equation*}
$$

(b) Use Binomial Theorem and expand $\left(x-\frac{1}{2 x}\right)^{5}$.
(c) Find the slope of the line through the points $(4,-6),(-2,-5)$.

