No. of Printed Pages: 4

BCEE-061

DIPLOMA IN CIVIL ENGINEERING DCLE(G) Term-End Examination June, 2014

BCEE-061 : PRESTRESSED CONCRETE

Time : 2 hours

NN610

Maximum Marks: 70

Note : Question no. 1 is **compulsory**. Attempt any **four** questions from the remaining questions. Assume required data suitably, if found missing.

- 1. Choose the most appropriate answer from the given options : $7 \times 2=14$
 - (a) Splices are used for
 - (i) positioning of anchorages
 - (ii) stretching tendons
 - (iii) joining tendons
 - (iv) holding tendons at correct profile
 - (b) The minimum grade of concrete used for post-tensioned concrete structures is
 - (i) **M-25**
 - (ii) M-30
 - (iii) M-35
 - (iv) M-40

BCEE-061

1

P.T.O.

- (c) Shrinkage of concrete in post-tensioned concrete structures
 - (i) decreases with age of concrete at transfer
 - (ii) increases with age of concrete at transfer
 - (iii) remains constant
 - (iv) None of these
- (d) Magnel Blaton method of prestressing is used for
 - (i) **Pre-tensioning**
 - (ii) Post-tensioning
 - (iii) Both
 - (iv) Partial pre-tensioning
- (e) As compared to an RCC Beam for the same span and loading, the size of that in prestressed concrete would be
 - (i) more
 - (ii) less
 - (iii) equal
 - (iv) None of these
- (f) In prestressed concrete structures the type of steel used may be
 - (i) HYSD bars
 - (ii) Mild steel bars
 - (iii) High Tensile strength wires/strand
 - (iv) All of these

BCEE-061

- Modulus of elasticity of concrete may be (**g**) obtained from
 - 4500 $\sqrt{f_{ck}}$ (i)
 - (ii) 5200 $\sqrt{f_{ck}}$
 - (iii) 5700 $\sqrt{f_{ck}}$
 - (iv) None of these
- Calculate the stresses in bottom and top 2. (a) fibres at mid span location of a prestressed concrete beam which is simply supported. This beam of 6.0 m span has a cross-section of size 200 mm \times 450 mm and is subjected to an imposed land of 5 kN/m over the entire span. Density of concrete may be assumed as 25 kN/m³. A prestressing force of 300 kN is applied at constant eccentricity of 100 mm towards soffit of beam.
 - (b) Compare briefly pre-tensioned and post-tensioned methods of prestressing.
- 3. A concrete beam 200 mm \times 400 mm (deep) is pre-tensioned by 7 wires of 6 mm diameter with initial stress 1200 N/mm². Pre-stressing force is applied at an eccentricity of 60 mm. Calculate the loss of pre-stress due to (i) elastic shortening (ii) creep of concrete (iii) shrinkage of concrete and (iv) relaxation of steel. Assume $E_{\rm S}$ = 2 × 10⁵ N/mm², $E_{\rm C}$ = 35 × 10³ N/mm², 1.6. Creep coefficient -Shrinkage strain = 3×10^{-4} , Relaxation of steel = 6%. **BCEE-061** 3 P.T.O.

7

7

14

4.	(a)	Describe the utility of Hoyer's long line method of pre-tensioning. Explain with a neat sketch.	7
	(b)	Discuss briefly the concept of pressure line.	7
5.	Write short notes on any <i>two</i> of the following : $2 \times 7 = 14$		
	(a)	Flexure failure of prestressed concrete beams	
	(b)	Prestressed concrete pipes	
	(c)	Secondary stresses due to tendon curvature	
6.	(a)	Discuss why a good quality of concrete and steel is needed in prestressed concrete structures.	7
	(b)	Describe chemical prestressing briefly.	7
7.	(a)	Explain reasons of variation in tendon stresses in post-tensioned concrete members.	7
	(b)	Explain three advantages of prestressed concrete. What are the types of structures in which use of prestressed concrete is preferred ?	7

BCEE-061

1,000

4