No. of Printed Pages : 2

B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

01340

June, 2014

BME-029 : ROBOTICS

Time : 3 hours

Maximum Marks: 70

Note : Answer any **five** questions. All questions carry equal marks.

1.	(a)	Write four laws of Robotics.	7
	(b)	What kind of robot is suitable for painting ? Why ?	7
2.	(a)	With the help of suitable block diagram briefly explain the components of an actuator.	7
	(b)	List any three advantages and disadvantages of a pneumatic actuator.	7
3.	(a)	What are the major capabilities of sensors required for robotic applications ?	7
	(b)	How can we reduce the processing time in a vision system ? Explain.	7

BME-029

P.T.O.

1

- **4.** (a) With suitable sketch explain the kinematic structure of a robot.
 - (b) Assume that $[Q_A]_F$ and $[Q_B]_A$ are given by

$$\begin{bmatrix} Q_A \end{bmatrix}_F = \begin{bmatrix} \cos 30^\circ & -\sin 30^\circ & 0\\ \sin 30^\circ & \cos 30^\circ & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} Q_B \end{bmatrix}_A = \begin{bmatrix} \cos 45^\circ & -\sin 45^\circ & 0\\ \sin 45^\circ & \cos 45^\circ & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Find $[Q_B]_{F}$.

- 5. (a) Find the Jacobian matrix for a planar 2-link revolute-jointed arm.
 - (b) Write the Euler-Lagrange equations of motion. Explain all the terms used in the above equations.
- 6. What are the advantages and disadvantages of the following schemes in trajectory planning : 7+7
 - (a) Joint Space Scheme
 - (b) Cartesian Space Scheme
- 7. (a) Write the applications for point to point and continuous path planning. 7

2

(b) Write the steps involved to develop the program of a typical robot. 7

7

9

5