B.Tech. MECHANICAL ENGINEERING
 O1379 (COMPUTER INTEGRATED
 MANUFACTURING) /
 BTCLEVI / BTMEVI / BTELVI / BTCSVI / BTECVI
 Term-End Examination
 June, 2014

BME-009 : COMPUTER PROGRAMMING AND APPLICATIONS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any four questions from Part A. Attempt any one question from Part B. All questions carry equal marks. Use of scientific calculator is permitted.

PART A

1. (a) Find the cubic polynomial which takes the following values :
$\mathrm{y}(0)=1, \mathrm{y}(1)=0, \mathrm{y}(2)=1$ and $\mathrm{y}(3)=10$
Hence, obtain $y(4)$.
(b) Use Stirlings formula to find $y(32)$ when the values of x and $\mathrm{y}(\mathrm{x})$ are given by the following table :

$$
\begin{array}{ccccccc}
\mathrm{x}: & 20 & 25 & 30 & 35 & 40 & 45 \\
\mathrm{y}(\mathrm{x}): & 14.035 & 13.674 & 13.257 & 12.734 & 12.089 & 11.309
\end{array}
$$

2. (a) Use Lagrange's interpolation formula to find the value of $f(x)$ when $x=0$, from the following table :

$\mathrm{x}:$	3	2	1	-1
$\mathrm{f}(\mathrm{x}):$	3	12	15	-21

(b) Find the first and second derivatives of $f(x)$ at $\mathrm{x}=1 \cdot 1$ from the following tabulated values using Newton's forward difference:
$\begin{array}{lllllll}\mathrm{x}: & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0\end{array}$

$$
\mathrm{f}(\mathrm{x}): 0.0000 \quad 0.1280 \quad 0.5440 \quad 1 \cdot 2960 \quad 2.4320 \quad 4.0000
$$

3. (a) Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$, using Simpson's $1 / 3$ rule by taking $h=1 / 4$. Hence compute an approximate value of the integral in each case.

7
(b) $y^{\prime \prime}+x y^{\prime}+y=0 ; y(0)=1, y^{\prime}(0)=0$. Obtain y when $x=0.1$ and $x=0 \cdot 2$, using Taylor series method.
4. (a) Using bisection method, find an approximation root of the equation $x^{3}-x-4=0$ in the interval $] 1,2[$ to two decimal places.
(b) Find an approximate value of $\sqrt{2}$ using the Newton - Raphson formula.
5. (a) Perform three iterations of the Jacobi method for solving the system of equations given as

$$
\left[\begin{array}{lll}
5 & 2 & 2 \\
2 & 5 & 3 \\
2 & 1 & 5
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-6 \\
-4
\end{array}\right]
$$

with $\mathrm{x}^{(0)}=0$. Exact solution is $\mathrm{x}(1-1-1)^{\mathrm{T}}$.
(b) Find the inverse of the matrix

$$
A=\left[\begin{array}{rrr}
3 & 1 & 2 \\
2 & -1 & -1 \\
1 & -2 & 1
\end{array}\right]
$$

using the LU decomposition method.
6. (a) Solve the system of equations

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}=8 \\
& -x_{1}+2 x_{2}-x_{3}=0 \\
& 3 x_{1}-6 x_{2}+4 x_{3}=1
\end{aligned}
$$

using Cramer's rule. 7
(b) Find by Horner's method, the root of the equation $\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}-100=0$. 7

PART B

7. (a) Write a $\mathrm{C}++$ program which finds the
maximum number and its position in a list
of N numbers.
(b) Explain the following with examples:
(i) Polymorphism 3
(ii) Virtual Functions 3
8. (a) Write a C++ program which determines the least of four nuınbers A, B, C and D with the help of a function small().
(b) Explain the following with examples:
(i) Inline functions 3
(ii) Operator overloading 3
