No. of Printed Pages: 3

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

NN254

June, 2014

BIEE-026 : ENERGY AUDITING AND ANALYSIS

Time : 3 hours

Maximum Marks: 70

Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a)	Discuss the importance of input-output curves in energy audit.	5
(b)	Explain variable speed drives in detail. What are the energy conservation schemes for them ?	5
2. (a)	Explain different co-generation cycles in detail.	5
(b)	How can tri-generation be done in chemical industries ? Explain with the help of a flow diagram.	5
3. (a)	State four types of classification of energy sources with one example for each.	5
(b)	List out the opportunities for energy conservation techniques in transformers.	5
BIEE-026	1 P.T	. O .

4.	(a)	What are constructional (rotor and stator only) and effective operational differences between conventional motor and energy	
		efficient motor ?	5
	(b)	How does the use of amorphous transformer and dry type transformer minimize the energy usage ?	5
5.	(a)	How does periodical mentainance of motor help in energy conservation ?	5
	(b)	Define "Demand Side Management" and state its features.	5
6.	(a)	What the help of neat labelled diagram explain working of gas-turbine co-generation system and state the area of application.	5
	(b)	Explain how energy flow diagram helps in energy audit procedure, with the help of suitable example.	5
7.	(a)	State any five benchmarking parameters followed for either equipment or industrial production.	5
	(b)	Explain the difference between energy conservation and energy efficiency and state one example where energy costs are reduced but energy consumption goes up.	5
8.	(a)	Differentiate between renewable and non-renewable energy with examples.	5
	(b)	Explain the functions and benefits of a demand controller.	5
-	F 000	•	

BIEE-026

- **9.** (a) List down any five different types of energy efficient retrofits. Explain their application and benefits in brief.
 - (b) The core loss of a 50 kVA transformer is 430 W. The copper loss at full-load is 525 W. Calculate the efficiencies at full load and at half load for 0.7 power factor.
- 10. Write short notes on any *four* of the following: $4 \times 2\frac{1}{2} = 10$
 - (a) Ton of refrigeration
 - (b) Specific energy consumption
 - (c) Reactive power
 - (d) Priming of centrifugal pump
 - (e) Techno economic analysis
 - (f) Energy Manager

BIEE-026

1,000

5

5