# B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI) 

## Term-End Examination

## BIEE-021 : CONTROL SYSTEM

Time: 3hours
Maximum Marks : 70

Note: Attempt any five questions. Each question carry equal marks.

1. (a) Evaluate $\frac{\mathrm{C}_{1}}{\mathrm{R}_{1}}$ and $\frac{\mathrm{C}_{2}}{\mathrm{R}_{2}}$ for a system whose block diagram representation is shown in Figure 1.


Figure 1
(b) Differentiate between open-loop and closed loop control system with suitable examples.
2. (a) Solve $\frac{\mathrm{C}_{2}}{\mathrm{R}_{1}}$ in Figure 2 by using Mason's gain formula.


Figure 2
(b) Obtain the nodal equations for the system shown in Figure 3 and draw its electrical analog based on force - current analogy.


## Figure 3

3. (a) The unit response of a system is given as $c(t)=\frac{5}{2}+5 t-\frac{5}{2} e^{-2 t}$. Find the transfer function of the system.
(b) For a unity feedback system whose open loop transfer function is

$$
G(s)=\frac{50}{(1+0 \cdot 1 s)(1+2 s)}
$$

find the position, velocity and acceleration error constants.
4. Construct the Bode plot for a unity feedback control system having

$$
G(s)=\frac{10(s+10)}{s(s+2)(s+5)}
$$

Find PM and GM. Also comment on the stability of system.
5. The open-loop transfer function of closed loop system is

$$
G(s) H(s)=\frac{4 s+1}{s^{2}(s+1)(2 s+1)}
$$

Determine stability using Nyquist's criteria.
6. Consider a matrix $A$ given below. Find the eigenvalues, eigenvector, modal matrix and diagonalise it.

$$
A=\left[\begin{array}{rrr}
0 & 1 & 0 \\
3 & 0 & 2 \\
-12 & -7 & -6
\end{array}\right]
$$

7. Write short notes on the following :
(a) PI, PD, PID controllers
(b) DC and AC servomotors
8. (a) Sketch the polar plot of $\frac{1}{\mathrm{~s}}$ and $\frac{1}{\mathrm{~s}^{2}}$ and comment on stability of the system.
(b) Determine the range of values of $\mathrm{k}(\mathrm{k}>0)$ such that characteristics equation $\mathrm{s}^{3}+3(\mathrm{k}+1) \mathrm{s}^{2}+(7 \mathrm{k}+5) \mathrm{s}+(4 \mathrm{k}+7)=0$ has roots more negative than $s=-1$.
