No. of Printed Pages: 3

BIEE-011

B. Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

00416

Term-End Examination June, 2014

BIEE-011: ELECTRICAL MACHINES - II

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks.

1. Explain the working principle of 3-phase induction motor. The rotor of induction motor cannot run at synchronous speed. Explain why.

10

2. For a 3-phase induction motor, prove the relation $P_2: P_{Cu}: P_{mech} = 1: S: (1-S)$, where P_2 is power input to rotor; P_{Cu} is rotor copper loss and P_{mech} is mechanical power developed by rotor, and S is slip of motor.

10

3. The starting and maximum torques of a 3-phase induction motor are 1.5 times and 2.5 times its full load torque. Determine the percentage change in rotor circuit resistance to obtain a full load slip of 0.03. Neglect starter impedance.

10

4. A 12 kW, 3-phase, 6-pole, 50 Hz, 400 V, delta connected induction motor runs at 960 rpm at full load. If it takes 85 A on direct starting, find the ratio of the starting torque to full load torque with a star delta starter. Full load efficiency and power factor are 88% and 0.85 respectively.

10

5. Write short notes on the following:

10

- (i) Cogging
- (ii) Crawling
- (iii) Hunting
- (iv) Synchronous Condenser
- 6. Consider a 3300 V delta-connected synchronous motor having a synchronous reactance per phase of 18 Ω . It operates at a leading p.f. of 0.707 when drawing 800 kW from mains. Calculate the excitation emf and the rotor angle (δ).

10

7. Explain the following:

5+5=10

- (a) Why are synchronous motors not self starting?
- (b) What is synchronous impedance? Why is it called so?
- 8. Determine the voltage regulation of a 2000 V, 1-phase alternator giving current of 100 A at 0.8 p.f. lagging. Use the test data given below: Full load current of 100 A is produced on short current by field excitation of 2.5 A, an emf of 500 V is generated on open circuit by same excitation. The armature resistance is 0.8 Ω.

10

9.	(a)	Discuss double revolving field theory of a single-phase induction motor. How can the single-phase induction motor be started?	5
	(b)	What will happen if a resistance start induction motor is started with a heavy load and fails to accelerate to a sufficient speed to cause the centrifugal switch contacts to open?	5
10.	(a)	Explain why regenerative braking cannot be applied to a squirrel cage induction motor. Name various types of braking of	
		induction motors.	5
	(b)	Write short note on Stepper motor.	5