No. of Printed Pages : 4

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination
June, 2014

BIEE-009 : APPLIED ELECTROMAGNETICS

Time: 3 hours
Maximum Marks : 70

Note: Attempt any seven questions.

1. Express the field $\overline{\mathrm{E}}=\left(\frac{\mathrm{A}}{\mathrm{r}^{2}}\right) \overline{\mathrm{q}}_{\mathrm{r}}$ (spherical) in
(a) Rectangular components
(b) Cylindrical components
2. (a) Derive the expression for electric field due
to infinite line charge.
(b). What is divergence theorem ? Explain physical significance of divergence.
3. (a) What are dielectrics? Discuss the effect of
field on dielectrics.
(b) In the cable shown in Figure 1, if $r_{1}=10 \mathrm{~mm}, \mathrm{r}_{2}=15 \mathrm{~mm}, \mathrm{r}_{3}=20 \mathrm{~mm}$, $\varepsilon_{\mathrm{r}_{1}}=2, \varepsilon_{\mathrm{r}_{2}}=4$, find the capacitance of the cable if it is 10 km long.

Figure 1
4. Derive the expression for $\nabla^{2} V$ in the three coordinate system.
5. What is Ampere's circuital law? Prove it and find the field due to a solid cylindrical conductor using Ampere's law.
6. The loop shown in Figure 2 is inside a uniform magnetic field $\bar{B}=50 \overline{\mathrm{a}}_{\mathrm{x}}\left(\mathrm{mWb} / \mathrm{m}^{2}\right)$. If side DC of the loop cuts the flux lines at the frequency of 50 Hz and the loop lies in the yz plane at time $t=0$, find
(a) induced emf at $\mathrm{t}=1 \mathrm{~ms}$.
(b) induced current at $\mathrm{t}=3 \mathrm{~ms}$.

Figure 2
7. (a) Consider square loop of length a through which current of I amp is passing in clockwise direction. Find H at the centre of the square loop.
(b) State and prove Poynting's theorem.
8. What is uniform plane EM-wave ? Derive the uniform plane wave equation for electric field in free space that is entirely in y direction and has an apparent velocity in x direction.
9. (a) For electromagnetic wave prove that $\overline{\mathrm{E}} \cdot \overline{\mathrm{H}}=0$ and $\overline{\mathrm{E}} \times \overline{\mathrm{H}}$ is having the direction of propagation of wave.
(b) A lossless transmission line is 80 cm long and operates at a frequency of 100 MHz . The line parameters are $L=0.25 \mu \mathrm{H} / \mathrm{m}$ and $\mathrm{C}=100 \mathrm{PF} / \mathrm{m}$. Find characteristic impedance, phase constant, velocity of line and input impedance for $\mathrm{Z}_{\mathrm{L}}=100 \Omega$.
10. Write short notes on any two of the following : 5×2
(i) Effect of field on dielectric
(ii) Maxwell equations
(iii) SWR

