No. of Printed Pages: 4

BIEE-009

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

00236

Term-End Examination June, 2014

BIEE-009: APPLIED ELECTROMAGNETICS

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions.

- 1. Express the field $\overline{E} = \left(\frac{A}{r^2}\right)\overline{q}_r$ (spherical) in
 - (a) Rectangular components
 - (b) Cylindrical components

5+5

5

5

- 2. (a) Derive the expression for electric field due to infinite line charge.
 - (b) What is divergence theorem? Explain physical significance of divergence.
- 3. (a) What are dielectrics? Discuss the effect of field on dielectrics.

(b) In the cable shown in Figure 1, if $r_1 = 10 \text{ mm}, \ r_2 = 15 \text{ mm}, \ r_3 = 20 \text{ mm},$ $\epsilon_{r_1} = 2, \ \epsilon_{r_2} = 4, \text{ find the capacitance of the cable if it is } 10 \text{ km long}.$

5

Figure 1

4. Derive the expression for $\nabla^2 V$ in the three coordinate system.

10

5. What is Ampere's circuital law? Prove it and find the field due to a solid cylindrical conductor using Ampere's law.

- 6. The loop shown in Figure 2 is inside a uniform magnetic field $\overline{B} = 50 \ \overline{a}_x$ (mWb/m²). If side DC of the loop cuts the flux lines at the frequency of 50 Hz and the loop lies in the yz plane at time t=0, find
 - (a) induced emf at t = 1 ms.
 - (b) induced current at t = 3 ms. 10

Figure 2

- 7. (a) Consider square loop of length a through which current of I amp is passing in clockwise direction. Find H at the centre of the square loop.
- 5 5
- (b) State and prove Poynting's theorem.
- 8. What is uniform plane EM-wave? Derive the uniform plane wave equation for electric field in free space that is entirely in y direction and has an apparent velocity in x direction.

- 9. (a) For electromagnetic wave prove that $\overline{E}\cdot\overline{H}=0 \quad \text{and} \quad \overline{E}\times\overline{H} \quad \text{is} \quad \text{having the}$ direction of propagation of wave.
- 5

- (b) A lossless transmission line is 80 cm long and operates at a frequency of 100 MHz. The line parameters are $L=0.25~\mu\text{H/m}$ and C=100~PF/m. Find characteristic impedance, phase constant, velocity of line and input impedance for $Z_L=100~\Omega.$
- 10. Write short notes on any **two** of the following: 5×2
 - (i) Effect of field on dielectric
 - (ii) Maxwell equations
 - (iii) SWR