B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination
 June, 2014

BIEE-005 : ELECTROMAGNETIC THEORY

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions of the following.

1. A charge Q coulomb is placed at the origin of a co-ordinate system. Prove that the charge enclosed by a sphere of radius ' a ' centered at the origin is Q coulombs, using Gauss's Law.
2. Derive the boundary conditions for conductor-free
space boundary.
10
3. Using the co-ordinate system named, give the vector at point $\mathrm{P}(2,-1,-3)$ that extends to $\mathrm{Q}(1,3,4): \quad 2+4+4=10$
(a) Cartesian
(b) Cylindrical
(c) Spherical
4. State Ampere's circuital law and derive expression for $\overline{\mathrm{H}}$ at any point due to uniform surface current density $\overline{\mathrm{K}}$ on an infinite plane.
5. Enlist the Maxwell's Equation for time varying field in point form and integral form along with the law from which they are derived.
6. Derive equation for wave motion in perfect dielectric.10
7. A infinitely long uniform line charge is located at $y=3, z=5$. If $P_{L}=30 n C / m$, find \bar{E} at (i) origin and (ii) $\mathrm{P}_{\mathrm{B}}(0,6,1)$.
8. At an operating radian frequency of $500 \mathrm{M} \mathrm{rad} / \mathrm{s}$, typical circuit values for a certain transmission line are : $R=0.2 \Omega / \mathrm{m}, \mathrm{L}=0.25 \mu \mathrm{H} / \mathrm{m}, G=10 \mu \mathrm{~S} / \mathrm{m}$, and $C=100 \mathrm{pF} / \mathrm{m}$. Find 10
(a) α
(b) β
(c) λ
(d) $\mathbf{v}_{\mathbf{p}}$
(e) Z_{0}
9. State True or False :
(a) Cross product of two vectors $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$ is $\overline{\mathrm{A}} \times \overline{\mathrm{B}}=|\overline{\mathrm{A}}||\overline{\mathrm{B}}| \cos \theta \overline{\mathrm{a}}_{\mathrm{N}}$
(b) $\bar{a}_{\mathbf{x}} \cdot \bar{a}_{\mathrm{r}}=\sin \theta \sin \phi$
(c) $\psi=\oint \overline{\mathrm{D}}_{\mathrm{s}} \cdot \mathrm{d} \overline{\mathrm{S}}=\mathrm{Q}$ is the statement of S
Gauss's Law.
(d) Divergence theorem relates a triple integration throughout some volume to a double integration over the surface of that volume.
(e) No work is involved in moving a unit charge around an equipotential surface.
10. Write short notes on any two : $5 \times 2=10$
(a) Stokes' Theorem
(b) S.W.R. (Standing Wave Ratio)
(c) Divergence Theorem
