BIELE-014

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2014

BIELE-014 : MULTIRATE SYSTEMS

Time : 3 hours

Maximum Marks: 70

Note : Answer any **seven** questions. All questions carry equal marks. Missing data may be suitably assumed. Use of calculator is permitted.

- 1. (a) Explain the need for multirate digital signal processing. Discuss its significance in different media.
 - (b) Discuss sampling of a continuous time signal and explain periodic sampling of the signal.
- 5

5

5

5

- 2. (a) Explain sampling rate compression technique.
 - (b) Obtain the expression for the output Y(n) in terms of X(n) for the multirate system given as follows.

$$X(n) \longrightarrow \uparrow 5 \longrightarrow \downarrow 20 \longrightarrow \uparrow 4 \longrightarrow Y(n)$$

BIELE-014

P.T.O.

3.	Discuss the Quadrature necessary co	e construction Mirror Filter (Q ndition for perfe	of a (MF) an ct recon	two-channel d explain the struction.	10
4.	(a) Explain type-1 polyphase decomposition in the realization of Finite Impulse Response (FIR) filters.				5
	(b) Draw decima	the block diag ator and interpol	ram of lator.	a multistage	5
5.	5. Design a single-stage and two-stage interpolator to meet the following specifications : I = 20 Input sampling rate : 10,000 Hz Pass band : $0 \le f \le 90$ Hz Transition band = $90 \le f \le 100$ Hz				10
	Ripple	$b_1 : \delta_1 = 10^{-2}, \delta_2 =$	10^{-3}		
6.	Consider the signal $X(n) = 9^n u(n)$, $ a < 1$.				
	(a) Determine the spectrum X(w).				
	(b) The s that Deter	ignal X(n) is ap reduces the rat mine the output	plied to e by a spectru	a decimator factor of 2. m.	10
7.	(a) What Filter	are the errors i (QMF) bank ?	n Quad	rature Mirror	5
	(b) Expla achiev	in how alias-fre ved.	e QMF	realisation is	5
BIE	LE-014	2			

- **8.** Discuss the following :
 - (a) Linear phase FIR QMF bank
 - (b) IIR QMF bank
- 9. Design a decimator and a down sampler with an input signal x(n) having a cut-off frequency $\omega_c = \pi/2$, by a factor D = 2. Use Remez Algorithm to determine the coefficient of the FIR filter which has 0.1 dB ripple in the pass band and is down by at least 30 dB in the stop band.

10