B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
June, 2014

BIELE-013 : DEVICE MODELLING FOR CIRCUIT SIMULATION

Time: 3 hours

Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Missing data may be suitably assumed. Calculators are permitted.

1. The transistor shown in the circuit of figure 1 has $\beta=100$ and exhibits a V_{BE} of 0.7 V at $\mathrm{i}_{\mathrm{C}}=1 \mathrm{~mA}$. Design the circuit (R_{C} and R_{E}) so that a current of 2 A flows through the collector and a voltage of +5 V appears at the collector.

Figure 1
2. (a)

Figure 2

For the circuit shown in figure 2, the transistor has $\mathrm{V}_{\mathrm{t}}=1.5 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}^{\prime}(\mathrm{W} / \mathrm{L})=0.25$ $\mathrm{mA} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{A}}=50 \mathrm{~V}$. Calculate $\mathrm{I}_{\mathrm{D}}, \mathrm{V}_{\mathrm{DS}}$ and V_{GS}.
(b) An E-MOSFET with $\mathrm{V}_{\mathrm{t}}=0.7 \mathrm{~V}$ conducts a current $\mathrm{i}_{\mathrm{D}}=100 \mu \mathrm{~A}$ when $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=1.2 \mathrm{~V}$. Find i_{D} for $V_{G S}=1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DS}}=3 \mathrm{~V}$. Also calculate r_{DS} for small V_{DS} and $\mathrm{V}_{\mathrm{GS}}=3.2 \mathrm{~V} . \quad 5$
3. With the help of a suitable example explain the principle and the objectives of circuit simulation. 10
4. Give the model statement in SPICE for the following :
$2 \times 5=10$
(i) Op-Amp
(ii) Diode
(iii) BJT
(iv) MOSFET
(v) FET
5. What do we understand by the term SPICE ? Explain how will we carry out the AC and Transient analysis of the circuit. $\quad 3+3 \frac{1}{2}+3 \frac{1}{2}$
6. Discuss the small-signal model of a diode in detail with the help of suitable mathematical expressions. 10
7. Explain in brief the various noise models of MOSFETs. 10
8. What are the differences between LEVEL-1 and LEVEL-2 large signal MOSFET models ? 10
9. Explain is brief the operation of following with the help of neat sketch :
(i) Heterojunction Bipolar Transistors (HBTs).
(ii) High-Electron Mobility Transistor (HEMT).
10. Write short notes on any two of the following :
(i) Short-Channel Effects in MOSFETs
(ii) MESFETs
(iii) Principle of heterojunction device

