No. of Printed Pages: 4

BIEL-020

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

00334

Term-End Examination June. 2014

BIEL-020: CONTROL ENGINEERING

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Use of calculator is permissible.

1. (a) Find the transfer function of the signal graph shown in Figure 1.

Figure 1

(b) What is the effect of feedback on the system gain and system sensitivity? Prove it mathematically.

5

5

2. A mechanical vibratory system is shown in Figure 2(a). When a force of 8.9 N is applied to the system, the mass oscillates as shown in Figure 2(b). Find the values of M, B and K.

10

- **3.** (a) What is meant by PID control? What are the advantages of PID controller?
 - (b) The forward path transfer function of a unity feedback control is given by

$$G(s) = \frac{2}{s(s+3)}$$

Obtain the expression for unit step response of the system.

6

4

- 4. The characteristic equation of a feedback control system is $s^4 + 20s^3 + 15s^2 + 2s + K = 0$.
 - (a) Determine the range of K for the system to be stable.
 - (b) Can the system be marginally stable? If so, find the required value of K and the frequency of sustained oscillation.
- 5. Draw the Bode plot for the transfer function

$$G(s) = \frac{36 (1 + 0.2 s)}{s^2 (1 + 0.05 s) (1 + 0.01 s)}$$

From the Bode plot, determine

- (a) Phase Crossover frequency
- (b) Gain Crossover frequency
- (c) Gain Margin
- (d) Phase Margin

10

6

6. Sketch the polar plot of the function

$$G(s) = \frac{1}{s^2(1 + sT)}$$

7. State and explain the Nyquist Stability Criterion.
 What is the effect of addition of a pole at s = 0 to G(s)H(s) on the Nyquist plot?

- 8. What is lag-compensator? Obtain the transfer function of lag-compensator and draw the pole-zero plot.
- 9. Obtain the state variable representation of a field-controlled dc motor shown in Figure 3.

Figure 3

- 10. Write short notes on any **two** of the following: $2 \times 5 = 10$
 - (a) Neural Network
 - (b) Routh-Hurwitz Stability Criterion
 - (c) M and N Circle