B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

00044

Term-End Examination June, 2014

BIEL-013: ANTENNAS AND PROPAGATION

Tir	ne : 3 i	hours Maximum Marks:	Maximum Marks : 70		
Note: Attempt any seven questions. All questions carequal marks.					
1.	(a)	Explain Helical Antenna with neat diagrams.	5		
	(b)	If a helical antenna has a spacing between turns 0.05 m, diameter 0.1 m, number of turns equal to 20 and operates at 1000 MHz, find NULL-to-NULL beam width of the main beam and also half-power beam width and directivity.	5		
2.	(a)	Write down the salient features of loop antenna. Also derive the expression for radiation resistance.	5		
	(b)	Describe the term Reflectors. Also describe the different types of reflectors in brief.	5		

3.	(a)	Define dipole arrays. Differentiate between Broadside arrays and End-fire array.	5
	(b)	Find directivity and effective area of Half Wave dipole which operates at 500 MHz.	5
4.	(a)	Define EM wave and also derive expression for uniform plane wave equation.	5
	(b)	Define Antenna and its functions. Also list the antenna parameters with required expressions.	5
5.	(a)	Define the following terms in brief: (i) Critical frequency (ii) Skip distance (iii) Maximum usable frequency	5
	(b)	(iv) Line of sight A receiving antenna is located at 80 kms from the transmitting antenna. The height of the transmitting antenna is 100 m. What is the required height of the receiving antenna?	5
6.	(a)	If an array of isotropic radiators is operated at 6 GHz and is required to produce a broadside beam, find NULL-to-NULL beam width if the array length is 10 m. Also find directivity	

(b) Obtain the resultant pattern of two short vertical dipoles as shown in figure at point P.

5

5

5

5

- 7. (a) A paraboloid reflector operates at a frequency of 10 GHz and it provides a power gain of $g_p = 75$ dB. Find the capture
 - (b) Two dipoles of gain 1.64 each are used for transmitting and receiving purposes. They are separated by a distance of 10 m. The radiated power by the transmitting antenna is 15 W at a frequency of 60 MHz. Determine the receiving power.

area of the paraboloid and beam width.

- **8.** (a) Discuss turnstile antenna with its applications.
 - (b) Explain Ionospheric wave propagation and its characteristics. 5

BIEL-013 3 P.T.O.

9. (a) Derive the expression for radiated power and radiation resistance of current element.

5

5

- (b) Differentiate Resonant Antenna and Non-resonant Antenna.
- **10.** Define any *two* of the following in brief:

 $2 \times 5 = 10$

- (a) Duct propagation
- (b) Balinet Principle
- (b) Log Periodic Antenna