B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
June, 2014

BIEL-006 : ELECTROMAGNETIC FIELD THEORY

Time: 3 hours
Maximum Marks : 70
Note : Attempt any seven questions. Each question carries equal marks.

1. (a) Express the vector

$$
B=\frac{10}{r} \hat{a}_{r}+r \cos \theta \hat{a}_{\theta}+\hat{a}_{\phi}
$$

in Cartesian and cylindrical coordinates.
(b) Determine the divergence of the following vector field :

$$
\overrightarrow{\mathbf{P}}=\mathrm{x}^{2} \mathrm{yz} \hat{\mathrm{a}}_{\mathrm{x}}+\mathrm{xz} \hat{\mathrm{a}}_{\mathrm{z}} \quad 2 \times 5=10
$$

2. (a) State and prove Gauss's law for electrostatic fields.
(b) A charge distribution with spherical symmetry has density

$$
\rho_{\mathrm{v}}=\left\{\begin{array}{cc}
\frac{\rho_{\mathbf{o}} \mathbf{r}}{\mathrm{R}} & 0 \leq \mathbf{r} \leq \mathrm{R} \\
0, & \mathbf{r}>\mathbf{R}
\end{array}\right.
$$

Determine $\overrightarrow{\mathrm{E}}$ everywhere.
3. (a) Write the Maxwell's equations in integral form.
(b) Given the magnetic vector potential $\vec{A}=\frac{-\rho^{2}}{4} \hat{a}_{z} \mathrm{~Wb} / \mathrm{m}$, calculate the total magnetic flux crossing the surface $\phi=\pi / 2$, $1 \leq \rho \leq 2 \mathrm{~m}, 0 \leq \mathrm{z} \leq 5 \mathrm{~m}$.
4. (a) Derive the wave equations for lossless medium.
(b) State and prove Poynting theorem.
5. (a) An electric vector \vec{E} of an $E M$ wave in free space is given by $E_{x}=E_{z}=0$ and

$$
E_{y}=A e^{j \omega(t-z / v)}
$$

Using Maxwell's equations, determine \vec{H}.
(b) Deduce the equation of continuity.
$2 \times 5=10$
6. (a) What are the various methods of impedance matching ? Explain any one of them.
(b) Show that VSWR on a terminated transmission line is $S=\frac{1+|\rho|}{1-|\rho|}$ where ρ is the reflection coefficient.
7. (a) A parallel-plate capacitor with plate area of $5 \mathrm{~cm}^{2}$ and plate separation of 3 mm has a voltage $\left(50 \sin 10^{3} \mathrm{t}\right) \mathrm{V}$ applied to its plates. Calculate the displacement current. Assume $\varepsilon=2 \varepsilon_{0}$.
(b) Find the reflection coefficient and transmission coefficient of an electric field wave travelling in air and incident normally on a boundary between air and dielectric having $\mu=\mu_{0}$ and $\varepsilon_{r}=4$ i.e. $\varepsilon=4 \varepsilon_{0}$.

$$
2 \times 5=10
$$

8. (a) In free space

$$
\begin{aligned}
& \overrightarrow{\mathrm{H}}(\mathrm{z}, \mathrm{t})=1 \cdot \mathrm{e}^{\mathrm{j}\left(1 \cdot 5 \times 10^{8} \mathrm{t}+\beta \mathrm{z}\right)} \cdot \hat{\mathrm{a}}_{\mathrm{x}} \mathrm{~A} / \mathrm{m} \\
& \text { Calculate the expression for } \overrightarrow{\mathrm{E}}(\mathrm{z}, \mathrm{t})
\end{aligned}
$$

(b) Using Maxwell's equation, show that the free space wave equation in E is

$$
\begin{array}{cc}
\nabla^{2} \overrightarrow{\mathrm{E}}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathrm{E}}{\partial \mathrm{t}^{2}}=0 & 2 \times 5=10 \\
3 & \text { P.T.O. }
\end{array}
$$

9. (a) Calculate the characteristic impedance, propagation constant at 400 kHz for a transmission line having $\mathrm{L}=0.5 \mathrm{mH} / \mathrm{km}$, $\mathrm{C}=0.08 \mu \mathrm{~F} / \mathrm{km}$ and negligible R and G .
(b) Derive the expressions for the attenuation and phase shift constants of the line in terms of the primary constants of transmission line. $2 \times 5=10$
10. Write short notes on any two of the following : $2 \times 5=10$
(a) Boundary conditions
(b) Single stub matching
(c) Skin effect
