No. of Printed Pages : 4

BIEL-006

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2014

BIEL-006 : ELECTROMAGNETIC FIELD THEORY

Time : 3 hours

Maximum Marks: 70

Note : Attempt any **seven** questions. Each question carries equal marks.

1. (a) Express the vector

$$\mathbf{B} = \frac{10}{r} \hat{\mathbf{a}}_{r} + r \cos \theta \, \hat{\mathbf{a}}_{\theta} + \hat{\mathbf{a}}_{\phi}$$

in Cartesian and cylindrical coordinates.

(b) Determine the divergence of the following vector field :

1

$$\vec{P} = x^2 yz \hat{a}_x + xz \hat{a}_z$$
 $2 \times 5 = 10$

P.T.O.

- 2. (a) State and prove Gauss's law for electrostatic fields.
 - (b) A charge distribution with spherical symmetry has density

$$\rho_{\mathbf{v}} = \begin{cases} \frac{\rho_0 \mathbf{r}}{\mathbf{R}} & 0 \le \mathbf{r} \le \mathbf{R} \\ 0, & \mathbf{r} > \mathbf{R} \end{cases}$$

Determine E everywhere. $2 \times 5 = 10$

- **3.** (a) Write the Maxwell's equations in integral form.
 - (b) Given the magnetic vector potential $\overrightarrow{A} = \frac{-\rho^2}{4} \widehat{a}_z$ Wb/m, calculate the total magnetic flux crossing the surface $\phi = \pi/2$, $1 \le \rho \le 2m$, $0 \le z \le 5m$. $2 \times 5 = 10$
- 4. (a) Derive the wave equations for lossless medium.
 - (b) State and prove Poynting theorem. $2 \times 5 = 10$

5. (a) An electric vector $\stackrel{\longrightarrow}{E}$ of an EM wave in free space is given by $E_x = E_z = 0$ and $E_y = A e^{j\omega (t - z/v)}$

Using Maxwell's equations, determine H.

(b) Deduce the equation of continuity. $2 \times 5 = 10$

BIEL-006

- 6. (a) What are the various methods of impedance matching ? Explain any one of them.
 - (b) Show that VSWR on a terminated transmission line is $S = \frac{1+|\rho|}{1-|\rho|}$ where ρ is the reflection coefficient. $2 \times 5 = 10$
- 7. (a) A parallel-plate capacitor with plate area of 5 cm^2 and plate separation of 3 mm has a voltage (50 sin 10³ t) V applied to its plates. Calculate the displacement current. Assume $\varepsilon = 2\varepsilon_0$.
 - (b) Find the reflection coefficient and transmission coefficient of an electric field wave travelling in air and incident normally on a boundary between air and dielectric having $\mu = \mu_0$ and $\varepsilon_r = 4$ i.e. $\varepsilon = 4\varepsilon_0$. $2 \times 5 = 10$
- 8. (a) In free space $\overrightarrow{H}(z, t) = 1 \cdot e^{j(1 \cdot 5 \times 10^8 t + \beta z)} \cdot a_x^{\circ} A/m.$

Calculate the expression for $\vec{E}(z, t)$.

(b) Using Maxwell's equation, show that the free space wave equation in E is

$$\nabla^2 \overrightarrow{\mathbf{E}} - \mu_0 \,\varepsilon_0 \,\frac{\partial^2 \mathbf{E}}{\partial \mathbf{t}^2} = 0 \qquad \qquad 2 \times 5 = 10$$

3

- 9. (a) Calculate the characteristic impedance, propagation constant at 400 kHz for a transmission line having L = 0.5 mH/km, $C = 0.08 \mu$ F/km and negligible R and G.
 - (b) Derive the expressions for the attenuation and phase shift constants of the line in terms of the primary constants of transmission line. $2 \times 5=10$
- 10. Write short notes on any *two* of the following : $2 \times 5 = 10$
 - (a) Boundary conditions
 - (b) Single stub matching
 - (c) Skin effect