B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
June, 2014

BICS-018 : THEORY OF COMPUTATION

Time: 3 hours

Maximum Marks : 70
Note: Attempt any seven questions out of ten questions. All questions carry equal marks.

1. (a) What is a language ? Explain operations on language.
(b) Define a finite state machine and explain model of finite automation.
(c) Find the language accepted by following finite machine.

2. (a) Give mathematical definition of NFA and state main difference between NFA and DFA.
(b) Find NFA which accepts the set of all strings over $\{0,1\}$ in which the number of occurences of 0 is divisible by 3 and the number of occurences of 1 is divisible by 2 .
3. (a) Define NFA ε-Transitions and write the differences between NFA- ε and ordinary NFA.
(b) What is the significance of NFA with \wedge-transitions? Explain.
(c) Describe the language accepted by automata as shown in figure.

4. (a) Construct transition systems equivalent to the regular expression $(a b+a)^{*}(a a+b)$.
(b) Prove the following identity :
$\left(a^{*} a b+b a\right)^{*} a^{*}=(a+a b+b a)^{*}$
5
5. (a) Construct a DFA accepting language represented by $0 * 1 * 2 *$.
(b) Construct a NFA for the following regular expression $\left(0+10^{*}+01^{*} 0\right)$.
6. (a) Define ambiguous grammar and give example. Show that grammar is ambiguous $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \varepsilon$ 5
(b) When is a grammar said to be in reduced form?5
7. (a) Find the PDA with only one state that accepts the language $\left\{a^{m} b^{n}: n>m\right\}$ 5
(b) Construct a PDA generating all odd palindromes over string $\{a, b, c\}$. 5
8. (a) Describe the Turing machine that accepts the language $L=\left\{w \in\{a, b, c\}^{*} / w\right.$ contains equal number of a's, b's and c's). 5
(b) Explain the importance of Turing machine concept. 5
9. (a) Show that if L and \bar{L} are recursively enumerable, then L is recursive. 2
(b) Explain in detail Church's hypothesis. 5
(c) Write a short note on "Modifications ofTuring machines."3
10. (a) Briefly discuss the problem of travelling salesperson. 5
(b) State and explain the chromatic number problem. 5
