No. of Printed Pages : 3

BICS-014

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

00037

June, 2014

BICS-014 : DESIGN AND ANALYSIS OF ALGORITHM

Time : 3 hours

Maximum Marks: 70

Note : Attempt any **seven** questions. All questions carry equal marks.

1. (a)) Let f(n) and g(n) be asymptotically	
	non-negative functions. Using the basic	
	definition of θ -notation, prove that	
	$\max [f(n) \cdot g(n)] = \theta [f(n) + g(n)].$	5
(b)) Find complexity of this equation	5
	$T(n) = \sqrt{n} T(\sqrt{n}) + n$	
2. (a)) Illustrate the operation of	
	Heap-extract max on the heap	
	$A = \{15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1\}$	5
(b)) Describe performance of quick-sort.	ĩ
3. (a)) Define amortized analysis and define	-
	aggregate and potential methods.)
BICS-0	14 1 P.T.O	_

	(b)	Compute prefix function π for the pattern ababbabbabbabbabbabbabbabb. The alphabet $\Sigma = \{a, b\}$.	5
4.	(a) (b)	Define Hashing algorithms. Define the merge sort complexity.	5 5
5.	(a) (b)	Prove the correctness of Kruskal's algorithm. Define dynamic programming procedure.	5 5
6.	(a) (b) - 4	Define Backtracking approach using 8×8 Queen problem. Solve 1 1 2 3 4 2 4 3 5 6	5

- 7. (a) Prove that Clique problem is NP complete. 5
 - (b) Define Rabin Karp string matching technique.

5

BICS-014

(a)	Define Travelling Salesman problem with the triangle inequality and also define Sum	
	of Subset problem.	5
(b)	What are greedy algorithms ? Define 0/1 Knapsack problem.	5
(a)	Define Hamiltonian cycle problem.	5
(b)	Define the Monte Carlo algorithm.	5
Atten	npt any <i>two</i> from the following :	2×5
(i)	Define Las Vegas algorithm.	
(ii)	Define randomized quick-sort.	
(iii)	Define universal hashing.	
	(a) (b) (a) (b) Atten (i) (ii) (iii)	 (a) Define Travelling Salesman problem with the triangle inequality and also define Sum of Subset problem. (b) What are greedy algorithms ? Define 0/1 Knapsack problem. (a) Define Hamiltonian cycle problem. (b) Define the Monte Carlo algorithm. (b) Define the Monte Carlo algorithm. (c) Define Las Vegas algorithm. (c) Define randomized quick-sort. (c) Define universal hashing.

BICS-014