B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
$\square \square \square 37$
June, 2014

BICS-014 : DESIGN AND ANALYSIS OF ALGORITHM

Time: 3 hours

Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks.

1. (a) Let $f(n)$ and $g(n)$ be asymptotically non-negative functions. Using the basic definition of θ-notation, prove that $\max [\mathrm{f}(\mathrm{n}) \cdot \mathrm{g}(\mathrm{n})]=\theta[\mathrm{f}(\mathrm{n})+\mathrm{g}(\mathrm{n})]$. 5
(b) Find complexity of this equation 5

$$
T(n)=\sqrt{n} T(\sqrt{n})+n
$$

2. (a) Illustrate the operation of

Heap-extract max on the heap
$\mathrm{A}=\{15,13,9,5,12,8,7,4,0,6,2,1\}$
(b) Describe performance of quick-sort. 5
3. (a) Define amortized analysis and define aggregate and potential methods.
(b) Compute prefix function π for the pattern ababbabbabbababbabb. The alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.
4. (a) Define Hashing algorithms. 5
(b) Define the merge sort complexity.
5. (a) Prove the correctness of Kruskal's algorithm. 5
(b) Define dynamic programming procedure. 5
6. (a) Define Backtracking approach using 8×8 Queen problem.
(b) Solve 5

7. (a) Prove that Clique problem is NP complete.
(b) Define Rabin-Karp string matching technique.
8. (a) Define Travelling Salesman problem with the triangle inequality and also define Sum of Subset problem.
(b) What are greedy algorithms? Define $0 / 1$ Knapsack problem.5
9. (a) Define Hamiltonian cycle problem. 5
(b) Define the Monte Carlo algorithm. 5
10. Attempt any $t w o$ from the following: 2×5
(i) Define Las Vegas algorithm.
(ii) Define randomized quick-sort.
(iii) Define universal hashing.

