B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

June, 2014

BICS-009 : LOGIC DESIGN

Time: 3 hours
Maximum Marks : 70
Note : Seven questions are required to be answered

1. (a) Explain Binary, Octal and Hexadecimal number systems.
(b) Convert ($725 \cdot 25)_{8}$ to its decimal, binary and hexadecimal equivalent.
2. (a) What are the different ways in which negative numbers are represented ? Represent -9 in all the different types of representations.
(b) Using 2 's complement method, perform $\quad 2+2=4$
(i) $(156)_{10}-(99)_{10}$
(ii) $(16)_{10}-(25)_{10}$
3. What is a flip-flop ? How can a $R-S$ flip-flop be constructed using NOR gate? Explain its working with truth table.
4. (a) Explain Boolean variables, Boolean operations and Boolean expressions.
(b) What is DeMorgan's theorem ? Simplify the following logical expression by algebraic method :

$$
\overline{\mathrm{X}} \overline{\mathrm{Y}}+\overline{\mathrm{X} \mathrm{Z}+\mathrm{YZ}+\overline{\mathrm{Y}} \mathrm{Z} \overline{\mathrm{~W}}, ~}
$$

5. What is canonical form of a logic expression ? What is Sum of Products and Product of Sums? Simplify the function

$$
2+2+6=10
$$

$$
\mathrm{Y}=\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{C}
$$

6. What is modulus of a counter ? Discuss the working principle of a mod-3 counter. How are mod-6 and mod- 12 counters realized using mod-3 counters?

$$
2+3+5=10
$$

7. What is a mod-5 counter? How is it built? How is a decade counter realized using mod- 5 counter?

$$
2+3+5=10
$$

8. What is sequential circuit? How is it different from combinational circuit? What are the two models of sequential circuits ? Write down the design steps of sequential circuit. $1+1+2+6=10$
9. What is analog to digital conversion ? Explain A D converter-counter method. $2+8=10$
10. Write short notes on any two of the following : $5+5=10$
(a) 7400 TTL
(b) 74 C 00 CMOS
(c) TTL-to-CMOS Interface
