B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
June, 2014

BICS-008 : DISCRETE MATHEMATICAL STRUCTURES

Time: 3 hours

Maximum Marks : 70
Note: Part A is compulsory and carries 14 marks. Answer any four questions from Part B which carries 56 marks.

PART A

1. Prove the following using Venn Diagram : 2

$$
A \cap B \oplus C=(A \cap B) \oplus(A \cap C)
$$

2. Express the statement "Some students of Chemical Engineering are good in Mathematics" in symbolic form and write its negation.
3. Find the inverse of the function $f(x)=4 e^{(6 x+2)}$. 2
4. Show that the proposition

$$
(P \rightarrow \mathbf{Q}) \leftrightarrow(\sim \mathbf{Q} \rightarrow \sim \mathbf{P})
$$

is a tautology.
5. If S denotes the set of positive integers ≤ 100 for $x, y \in S$, define $x * y=\min \{x, y\}$. Verify whether ($\mathrm{S},{ }^{*}$) is a monoid assuming that * is associative.
6. State pigeon-hole principle.

2
7. Are the following graphs isomorphic ? Give reason.

2

PART B

Attempt any four questions.
8. (a) Prove by mathematical induction that for $\mathrm{n} \geq 1$:

$$
1.1!+2.2!+3.3!+\ldots . . .+n . n!=(n+1)!
$$

(b) Let a and b be positive integers and suppose Q is defined recursively as follows :

$$
Q(a, b)=\left\{\begin{array}{cc}
0, & \text { if } a<b \\
Q(a-b, b)+1 & \text { if } b \leq a
\end{array}\right\}
$$

Find $\mathrm{Q}(2,5), \mathrm{Q}(12,5), \mathrm{Q}(5861,7)$.
9. (a) Show that the set of the inverses of the elements of a right coset is a left coset i.e. $(\mathrm{Ha})^{-1}=\mathrm{a}^{-1} \mathrm{H}$.
(b) Prove that the set $\{1,3,4,5,9\}$ is an abelian group under multiplication modulo 11 as composition.

$$
7+7=14
$$

10. (a) Minimize the following Boolean Expression and give its DNF
$F(A, B, C, D)=\pi(0,1,4,5,8,12,13,14,15)$
(b) Consider the set $\mathrm{A}=\{2,7,14,28,56,84\}$ and the relation $\mathrm{a} \leq \mathrm{b}$ if and only if a divides b. Give the Hasse diagram for the poset (A, \leq). 7+7=14
11. (a) Without using truth table, show that

$$
(\sim P \wedge(\sim Q \wedge R)) \vee(Q \wedge R) \vee(P \wedge R) \leftrightarrow R
$$

(b) Determine the validity of the following argument using propositional logic : "If two sides of a triangle are equal, then their opposite angles are equal. Two sides of a triangle are not equal. Therefore, the opposite angles are not equal." $7+7=14$
12. (a) What are planar graphs ? Prove that Kuratowski's first graph $\left(\mathrm{K}_{5}\right)$ is non-planar.
(b) Solve the recurrence relation :

$$
a_{n}-7 a_{n-1}+26 a_{n-2}-24 a_{n-3}=0 \text { for } n \geq 2
$$

$5+9=14$

