B.Tech. Civil (Construction Management)/
B.Tech. Civil (Water Resources Engineering)

Term-End Examination
June, 2014
0056

ET-302(A) : COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of calculator is permitted.

1. (a) Write assignment statement to interchange the values of two variables X and Y having values 2.0 and 5.0 respectively.
(b) In which order will the elements of the array A be stored?

$$
\begin{equation*}
\mathrm{A}(-2: 2,1: 3) . \tag{5}
\end{equation*}
$$

(c) Write the following expression in FORTRAN :

$$
\frac{a x^{i}}{a d^{2}}+4 a+\log _{e} 15+\sec x
$$

2. (a) Write the FORTRAN program for the following flow chart using 'IF THEN ELSE' statement.

(b) Explain the following :
(i) Sequential file
(ii) Direct or random file access
(iii) Indexed sequential file
(c) Explain with example the difference between 'COMMON' and 'EQUIVALENCE' keywords. 3
3. (a) Find a real root of $x^{3}-x=1$ between 1 and 2 by bisection method. Compute five iterations.
(b) Find a positive value of (17) ${ }^{1 / 3}$ correct to four decimal places by Newton-Raphson method.
4. (a) From the given table :

$x:$	20	25	30	35
$y(x):$	0.342	0.423	0.5	0.65

Find the value of x for $y(x)=0.390$.
(b) Solve the following system of equations by LU decomposition method or triangularization method.

$$
\begin{aligned}
& x+2 y-z=3 \\
& x-y+z=-1 \\
& 2 x-2 y+3 z=2
\end{aligned}
$$

5. (a) The speed, v metres per second, of a car, t seconds after it starts, is shown in the following table :

t	v
0	0
12	0
24	3.60
36	10.08
48	18.90
60	21.60
72	18.54
84	10.26
96	4.56
108	5.40
120	9.00

Using Simpson's $\left(\frac{1}{3}\right)^{\text {rd }}$ rule, find the distance travelled by the car in 2 minutes.
(b) Assuming that the following values of y belong to a polynomial of degree 4, compute the next three values :

$$
\begin{array}{ccccccccc}
\mathrm{x}: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{y}: & 1 & -1 & 1 & -1 & 1 & - & - & -
\end{array}
$$

6. (a) Given, the initial value problem

$$
y^{\prime}=1+y^{2}, y(0)=0
$$

Find $\mathrm{y}(0.6)$ by Runge-Kutta fourth order method taking $\mathrm{h}=0 \cdot 2$.
(b) Determine the eigenvalues and the corresponding eigenvectors of the following matrix:

$$
\left[\begin{array}{ccc}
2 & -1 & -1 \\
3 & -2 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

7. (a) Find the $2^{\text {nd }}$ Taylor's expansion of $\mathrm{f}(\mathrm{x})=\sqrt{1+\mathrm{x}}$ in $]-1,1[$ about $\mathrm{x}=0$. Also find the bound of the error at $x=0 \cdot 2$.
(b) Divide the polynomial $p(x)=x^{5}-6 x^{4}+8 x^{3}+8 x^{2}+4 x-40$ by $(x-3)$ by the synthetic division method and find the remainder.
8. (a) Find the inverse of the matrix by 'asing Gauss-Jordan method

$$
A=\left[\begin{array}{ccc}
3 & 1 & 2 \\
2 & -3 & -1 \\
1 & -2 & 1
\end{array}\right]
$$

(b) Find the first and the second derivative of $f(x)$ at $x=0.04$ from the table given below :

x	$f(x)$
0.01	0.1023
0.02	0.1047
0.03	0.1071
0.04	0.1096
0.05	0.1122
0.06	0.1148

