B.Tech. Civil (Construction Management) /
B.Tech. Civil (Water Resources Engineering) /

01455 B.Tech. (Aerospace Engineering)
Term-End Examination
June, 2014

ET-102 : MATHEMATICS - III

Time: 3 hours
Maximum Marks : 70
Note: Attempt any ten questions. All questions carry equal marks. Use of scientific calculator is allowed.

1. Test for convergence the series $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots . . \infty$ 7
2. Expand $f(x)= \begin{cases}0, & -\pi<x<0 \\ \pi-x, & 0 \leq x<\pi\end{cases}$ in a Fourier series. 7
3. Solve the equation: $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=e^{x} \cos 2 x . \quad 7$
4. Solve : $x \frac{d y}{d x}+y=x^{2} y^{2}$.

ET-102
5. The population of a community is known to increase at a rate proportional to the number of people present at time t. If an initial population P_{0} has doubled in 5 years, how long will it take to triple? To quadruple?
6. Determine the poles of the function $f(z)=\frac{1}{(z-1)^{2}(z-3)}$ and the residue at each pole.
7. Find the transformation which maps the points $-1,0,2$ of the z-plane on to $0,1, \infty$ of the w-plane respectively.
8. Write the given number in the form $\mathrm{a}+\mathrm{ib}$.

$$
\begin{equation*}
\frac{(3-i)(2+3 i)}{1+i} \tag{7}
\end{equation*}
$$

9. Find the three cube roots of $\mathrm{z}=\mathrm{i}$.
10. Show that the given function is analytic in an appropriate domain.

$$
\begin{equation*}
f(z)=e^{x} \cos y+i e^{x} \sin y \tag{7}
\end{equation*}
$$

11. Expand $f(z)=\frac{1}{(z-1)^{2}(z-3)}$ in a Laurent series valid for $0<|\mathrm{z}-1|<2$.
12. Find the Laplace transform of $f(t)=(t+1)^{3}$.
13. Find the inverse Laplace transforms of $\left(\frac{1}{s^{2}+3 s}\right)$.
14. Solve $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q-z\left(x^{2}-y^{2}\right)=0$.
15. Apply the Routh-Hurwitz Criterion to determine the stability of the systems whose characteristic equations are given by :
(i) $\mathrm{s}^{4}+5 \mathrm{~s}^{3}+2 \mathrm{~s}+10=0$
(ii) $\mathrm{s}^{5}-2 \mathrm{~s}^{4}+2 \mathrm{~s}^{3}+4 \mathrm{~s}^{2}-11 \mathrm{~s}-10=0$
