No. of Printed Pages : 6

ET-101(A)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / B.Tech. (Aerospace Engineering) / BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI Term-End Examination

01355

June, 2014

ET-101 (A) : MATHEMATICS - I

Time : 3 hours

Maximum Marks: 70

Note: All questions are compulsory. Use of calculator is allowed.

1. Answer any *five* of the following : $5 \times 4 = 20$

(a) Evaluate any *one* of the following limits :

(i)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

(ii)
$$\lim_{x \to 0} \frac{\sqrt{1-x^2+x^2}-\sqrt{1+x^2}}{4^x-1}$$

(b) If $y = e^{\tan^{-1}} x$, then prove that

$$(1 + x^2) y_{n+2} + [2(n+1)x - 1] y_{n+1} + n(n+1) y_n = 0$$

ET-101(A)

1

P.T.O.

- (c) If $2^{x} + 2^{y} = 2^{x+y}$, then find the value of $\frac{dy}{dx}$ at x = y = 1.
- (d) If $x = \cos(\ln y)$, then show that $(1 - x^2) y_2 - xy_1 = y.$
- (e) If $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$, and $\mathbf{z} = \mathbf{z}$, find $\frac{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial(\mathbf{r}, \theta, \mathbf{z})}.$
- (f) A particle of unit mass moves in a straight line in a resisting medium which produces a resistance Kv. If the particle starts with a velocity u from the position $s = s_0$, show that as time goes on, the particle approaches the position $s = s_0 + \frac{u}{K}$.

4×4=16

2. Answer any *four* of the following :

- (a) Evaluate any *one* of the following :
 - (i) $\int_{0}^{\pi/2} \log(\tan x) dx$ (ii) $\int \sin^5 x dx$
- (b) Prove that :

$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4}$$

ET-101(A)

- Find the area of the region bounded by (c) the parabola $y = x^2 + 2$ and the lines y = x, x = 0, and x = 3.
- Solve any one of the following : (**d**)

(i)
$$(x + y)^2 \frac{dy}{dx} = 9$$

(ii) $x \, dy - y \, dx = \sqrt{(x^2 + y^2)} \, dx$

(e) If
$$\frac{dv}{dt} = -\frac{v^2}{100}$$
 and $v = 15$ when $t = 0$, find
the value of t when $v = 10$.

 $4 \times 4 = 16$

Let $\mathbf{A} = 2\hat{\mathbf{i}} + \hat{\mathbf{k}}$, $\mathbf{B} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, and (a) $\mathbf{C} = 4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k}$, determine a vector **R** satisfying

 $\mathbf{R} \times \mathbf{B} = \mathbf{C} \times \mathbf{B}$ and $\mathbf{R} \cdot \mathbf{A} = 0$.

- A force $3\hat{i} + \hat{k}$ acts through the point (b) $2\hat{i} - \hat{j} + 3\hat{k}$. Find the torque about the point $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$.
- Determine the constant 'p' such that the vector (c) $\mathbf{V} = (2x + 3y) \hat{\mathbf{i}} + (3y + 4z) \hat{\mathbf{j}} + (pz + 5x) \hat{\mathbf{k}}$ is solenoidal.

ET-101(A)

3

P.T.O.

- (d) A particle moves along a curve $x = t^3 + 3$, $y = t^2 + 4$, z = 2t + 5, where t is the time. Find the component of its velocity and acceleration at time t = 2 sec, in the direction 3i + 4j + 5k.
- (e) A fluid motion is given by

 $\mathbf{V} = (\mathbf{y} + \mathbf{z}) \stackrel{\wedge}{\mathbf{i}} + (\mathbf{z} + \mathbf{x}) \stackrel{\wedge}{\mathbf{j}} + (\mathbf{x} + \mathbf{y}) \stackrel{\wedge}{\mathbf{k}}.$

Is the motion irrotational ? If so, find the velocity potential. Is the motion possible for an incompressible fluid ?

 $6 \times 3 = 18$

4. Answer any *six* of the following :

(a) Prove that

$$\begin{vmatrix}
-2a & a+b & c+a \\
a+b & -2b & b+c \\
c+a & b+c & -2c
\end{vmatrix} = 4(b+c)(c+a)(a+b)$$

(b) Is the following a Skew – Hermitian matrix?

$$\begin{bmatrix} 0 & 1+i & 3-2i \\ i-1 & 0 & 2+3i \\ -2i-3 & 3i-2 & 0 \end{bmatrix}$$

ET-101(A)

(c) Find the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

(d) Show that the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

satisfies the matrix equation

$$A^3 - 6A^2 + 5A + 11I = 0.$$

(e) Find the values of x for which the matrix A is singular when

$$\mathbf{A} = \begin{bmatrix} 1 - \mathbf{x} & 2 & 2 \\ 2 & 2 - \mathbf{x} & 2 \\ 2 & 2 & 2 + \mathbf{x} \end{bmatrix}$$

(f) Solve the following equations by Cramer's rule or matrix method :

$$x - y + z = 4$$

$$2x + y - 3z = 0$$

$$x + y + z = 2$$

ET-101(A)

P.T.O.

- (g) Matrix A has x rows and x + 5 columns. Matrix B has y rows and 11 - y columns. Both AB and BA exist. Find x and y.
- (h) Find the eigenvalues of the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & \sqrt{3} \\ 0 & \sqrt{3} & 6 \end{bmatrix}$$