B.Tech. Civil (Construction Management) /
B.Tech. Civil (Water Resources Engineering) /
B.Tech. (Aerospace Engineering) /

BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI
01355
Term-End Examination
June, 2014

ET-101 (A) : MATHEMATICS - I

Time: 3 hours
Maximum Marks : 70
Note: All questions are compulsory. Use of calculator is allowed.

1. Answer any five of the following:
(a) Evaluate any one of the following limits:
(i) $\operatorname{Lim}_{\mathrm{x} \rightarrow 0} \frac{1-\cos \mathrm{x}}{\mathrm{x}^{2}}$
(ii) $\operatorname{Lim}_{\mathrm{x} \rightarrow 0} \frac{\sqrt{1-\mathrm{x}^{2}+\mathrm{x}^{2}}-\sqrt{1+\mathrm{x}^{2}}}{4^{\mathrm{x}}-1}$
(b) If $y=e^{\tan ^{-1}} x$, then prove that
$\left(1+x^{2}\right) y_{n+2}+[2(n+1) x-1] y_{n+1}+n(n+1) y_{n}=0$
(c) If $2^{x}+2^{y}=2^{x+y}$, then find the value of

$$
\frac{d y}{d x} \text { at } x=y=1
$$

(d) If $x=\cos (\ln y)$, then show that

$$
\left(1-x^{2}\right) y_{2}-x y_{1}=y
$$

(e) If $x=r \cos \theta, y=r \sin \theta$, and $z=z$, find $\frac{\partial(\mathrm{x}, \mathrm{y}, \mathrm{z})}{\partial(\mathbf{r}, \theta, \mathrm{z})}$.
(f) A particle of unit mass moves in a straight line in a resisting medium which produces a resistance Kv. If the particle starts with a velocity u from the position $s=s_{0}$, show that as time goes on, the particle approaches the position $s=s_{0}+\frac{u}{K}$.
2. Answer any four of the following :
(a) Evaluate any one of the following:
(i)

$$
\int_{0}^{\pi / 2}
$$

(ii) $\int \sin ^{5} x d x$
(b) Prove that:

$$
\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\frac{\pi}{4}
$$

(c) Find the area of the region bounded by the parabola $y=x^{2}+2$ and the lines $y=x, x=0$, and $x=3$.
(d) Solve any one of the following:
(i) $(x+y)^{2} \frac{d y}{d x}=9$
(ii) $x d y-y d x=\sqrt{\left(x^{2}+y^{2}\right)} d x$
(e) If $\frac{d v}{d t}=-\frac{v^{2}}{100}$ and $v=15$ when $t=0$, find the value of t when $v=10$.
3. Answer any four of the following:
(a) Let $\mathbf{A}=2 \hat{\mathbf{i}}+\hat{\mathbf{k}}, \mathbf{B}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$, and $\mathbf{C}=4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$, determine a vector \mathbf{R} satisfying $\mathbf{R} \times \mathbf{B}=\mathbf{C} \times \mathbf{B}$ and $\mathbf{R} . \mathbf{A}=\mathbf{0}$.
(b) A force $3 \hat{\mathbf{i}}+\hat{\mathbf{k}}$ acts through the point $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$. Find the torque about the point $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$.
(c) Determine the constant ' p ' such that the vector $\mathbf{V}=(2 x+3 y) \hat{\mathbf{i}}+(3 y+4 z) \hat{\mathbf{j}}+(p z+5 x) \hat{\mathbf{k}}$ is solenoidal.
(d) A particle moves along a curve $\mathrm{x}=\mathrm{t}^{3}+3$, $y=t^{2}+4, z=2 t+5$, where t is the time. Find the component of its velocity and acceleration at time $t=2 \mathrm{sec}$, in the direction $3 \hat{i}+4 \hat{j}+5 \hat{k}$.
(e) A fluid motion is given by

$$
\mathbf{V}=(y+z) \hat{\mathbf{i}}+(z+x) \hat{\mathbf{j}}+(x+y) \hat{\mathbf{k}} .
$$

Is the motion irrotational ? If so, find the velocity potential. Is the motion possible for an incompressible fluid?
4. Answer any six of the following :
(a) Prove that

$$
\left|\begin{array}{ccc}
-2 a & a+b & c+a \\
a+b & -2 b & b+c \\
c+a & b+c & -2 c
\end{array}\right|=4(b+c)(c+a)(a+b)
$$

(b) Is the following a Skew-Hermitian matrix?

$$
\left[\begin{array}{ccc}
0 & 1+i & 3-2 i \\
i-1 & 0 & 2+3 i \\
-2 i-3 & 3 i-2 & 0
\end{array}\right]
$$

(c) Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]
$$

(d) Show that the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]
$$

satisfies the matrix equation

$$
A^{3}-6 A^{2}+5 A+11 I=0
$$

(e) Find the values of x for which the matrix A is singular when

$$
A=\left[\begin{array}{ccc}
1-x & 2 & 2 \\
2 & 2-x & 2 \\
2 & 2 & 2+x
\end{array}\right]
$$

(f) Solve the following equations by Cramer's rule or matrix method :

$$
\begin{aligned}
& x-y+z=4 \\
& 2 x+y-3 z=0 \\
& x+y+z=2
\end{aligned}
$$

(g) Matrix A has x rows and $\mathrm{x}+5$ columns.

Matrix B has y rows and $11-\mathrm{y}$ columns. Both $A B$ and $B A$ exist. Find x and y.
(h) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 4 & \sqrt{3} \\
0 & \sqrt{3} & 6
\end{array}\right]
$$

