00015

B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

June, 2014

BICEE-022 : ADVANCED DESIGN OF FOUNDATION

Maximum Marks : 70

Note : Attempt any **seven** questions. Each question carries equal marks. Assume suitable data if required. Use of scientific calculator is permitted.

1.	(a)	Differentiate between a cantilever and	
		anchored sheet pile wall. Draw the	
		pressure distribution diagram showing	~
		forces for which each should be designed.	5
	(b)	Distinguish between single wall and double wall cofferdams with neat sketch.	5
2.	(a)	What do you mean by Arching of soil and its use on the design of the flexible	
		anchored sheet pile walls ?	5
	(b)	Explain the cellular stability of cellular cofferdams.	5
3.	(a)	Explain the different types of forces which act on cofferdams.	5
	(b)	Write the various types of cofferdams with suitable sketches.	5
BICEE-022 1		22 1 P	. T.O .

4. A cofferdam is to be constructed of cantilever sheet piling. It has to retain a soil bulk density of $2 \cdot 3$ g/cc and the angle of internal friction of 33° up to a height of 5 m. Find the depth to which the piles should be driven, assuming that two-third of the theoretical passive resistance is developed by the embedded length.

10

5

5

- 5. Briefly (a) explain Barken's Method of machine foundation design. 5 (b) Discuss the use of single degree freedom system the analysis in of Machine Foundation. 5 Why is vibration isolation required ? 6. (a) Describe various methods of vibration control. 5 (b) Why is it difficult to control low frequency vibrations? 5 7. (a) Illustrate different types of shell foundations with neat sketches. 5 (b) Explain special features of shell foundations for water tank. 5 8. (a) A concrete pile, 30 cm square and 5 m long is subjected to a horizontal load of 500 kN
 - and the moment of 4000 t.m at the ground level. Taking $\eta_n = 20 \text{ N/cm}^3$, find maximum deflection if the head of the pile is considered to be free.
 - (b) Based on Winkler's Model, give the classic solution of beam of finite length subjected to central concentrated load.

BICEE-022

2

- **9.** (a) Discuss the Winkler's assumption for laterally loaded piles.
 - (b) Describe the Free and Forced vibration of single degree of freedom without damping.
- **10.** Explain the following terms briefly : $2\frac{1}{2} \times 4=10$
 - (a) Modulus of Subgrade Reaction
 - (b) Contact Pressure distribution beneath the rigid footing
 - (c) Filonenko-Borodich Model
 - (d) Gravity structure

BICEE-022

5

,