B.Tech. CIVIL ENGINEERING

(BTCLEVI)

Term-End Examination
June, 2014

BICEE-021 : COMPUTATIONAL METHODS IN STRUCTURAL ENGINEERING

Time : 3 hours Maximum Marks : 70

Note: Attempt any five questions. All questions carry equal marks. Use of calculator is permitted.

1. Define the following : 14
(a) Isoparametric elements
(b) Shape function
(c) Constant strain triangle (C.S.T.)
(d) Finite element method
2. Solve the following set of equations by Gauss Elimination method.

$$
\begin{array}{r}
y+z=2 \\
2 x+3 z=5 \\
x+y+z=3
\end{array}
$$

3. (a) Locate the stationary points of $f(x)=12 x^{5}-45 x^{4}+40 x^{3}+5$ and find out if the function is convex, concave or neither at the points of optima base on testing rules.
(b) Discuss the properties of convex and concave function.
4. Minimize $\mathrm{f}=\mathrm{x}_{1}^{2}+2 \mathrm{x}_{2}^{2}+3 \mathrm{x}_{3}^{2}$ subject to the constraints

$$
\begin{aligned}
& \mathrm{g}_{1}=\mathrm{x}_{1}-\mathrm{x}_{2}-2 \mathrm{x}_{3} \leq 12 \\
& \mathrm{~g}_{2}=\mathrm{x}_{1}+2 \mathrm{x}_{2}-3 \mathrm{x}_{3} \leq 18
\end{aligned}
$$

using Kuhn-Tucker conditions.
5. Transform the general form of a linear programming problem given below to its standard form and solve it

Minimize $\mathrm{z}=-3 \mathrm{x}_{1}-5 \mathrm{x}_{2}$
Subject to $2 x_{1}-3 x_{2} \leq 15$

$$
\begin{aligned}
x_{1}+x_{2} & \leq 3 \\
4 x_{1}+x_{2} & \geq 2 \\
x_{1} & \geq 0 \\
x_{2} & \text { unrestricted. }
\end{aligned}
$$

6. Solve the problem by integer linear programming. 14

Maximize $z=3 x_{1}+x_{2}$
Subject to $2 x_{1}-x_{2}+y_{1}=6$ -

$$
\begin{aligned}
& 3 x_{1}+9 x_{2}+y_{2}=45 \\
& x_{1}, x_{2}, y_{1}, y_{2} \geq 0
\end{aligned}
$$

x_{2} should be an integer.
7. Invert matrix [a] given by equation

$$
[a]=\left[\begin{array}{ccc}
30 & -10 & 0 \\
-10 & 15 & -5 \\
0 & -5 & 5
\end{array}\right]
$$

by Choleski Method. 14

