No. of Printed Pages: 4

BICEE-015

B.Tech. CIVIL ENGINEERING (BTCLEVI)

00196

Term-End Examination June, 2014

BICEE-015: WATER RESOURCES SYSTEM PLANNING AND DESIGN

Time: 3 hours Maximum Marks: 70

Note: Answer any **seven** questions. All questions carry equal marks. Use of non-programable scientific calculator is allowed. Assume any missing data.

- 1. Define the following terms with examples:
- 5+5

- (a) Linear Programming
- (b) Water Quality
- 2. Two crops are grown on a land of 200 ha. The cost of raising crop 1 is 3 unit/ha, while for crop 2 it is 1 unit/ha. The benefit from crop 1 is 5 unit/ha and from crop 2 it is 1 unit/ha. A total of 300 units of money is available for raising both crops. What should be the cropping plan (how much area for crop 1 and how much area for crop 2) in order to maximize the total net benefits?

10

3. Maximize
$$z = 5x_1 + 8x_2$$

subject to $2x_1 + 3x_2 \ge 15$
 $3x_1 + 5x_2 \le 60$
 $x_1 + x_2 = 18$
 $x_1 \ge 0, x_2 \ge 0.$

4. Which of the following plans is more economical at 6% interest?

10

•	$Plan\ A$	Plan B
Cost of Equipment	50,000	35,000
Annual O & M cost	2,000	2,500
Salvage value	7,000	6,000
Service life	30 years	15 years

Compare the two alternate plans by

- (a) Equivalent Annual cost.
- (b) Present worth comparison.
- 5. An urban catchment has an area of 0.85 km². The slope of the catchment is 0.006 and maximum length of travel of water is 950 m. The maximum Rainfall depth with 25-year return period is as given below:

Duration (year)	5	10	20	30	40	60
Rainfall depth (m)	17	26	40	50	57	62

If a culvert for a drainage at the outlet is to be designed for a return period of 25 years, estimate

the required peak flow rate by rational formula [assume runoff coefficient = 0.3].

Time of concentration $(t_{c min})$ can be calculated as

$$t_c = 0.01947 L^{0.77} S^{-0.385}$$

L = Maximum Travel Length (m), S = Slope. 10

- **6.** Write short notes on the following: $2\times5=10$
 - (a) Different optimization techniques and their application in Water Resources
 - (b) Water Quality Management Planning
- 7. (a) What are economic and financial aspects of Water Resource Planning and Management?
 - (b) What are the institutional aspects of Water Resource Planning and Management? 5
- 8. (a) Describe the mass curve method for determining the storage capacity of a reservoir to be designed for a uniformly steady demand rate.
 - (b) Discuss various methods of converting the point rainfall values at various stations into an average value over a catchment.

5

5

9.	(a)	Discuss the various data required to be collected for planning of Water Resource	
		Project.	5
	(b)	Discuss the structural and non-structural	
		methods of flood control.	5
10.	What	t do understand by the term "multi-objective	
	planr	ning"? Discuss scope of multi-objective	
	planr	ning considering any case study.	10