B. Tech. (Civil Engineering) BTCLEVI

Term-End Examination	
BICE-022 : COMPUTER APPLICATIONS IN CIVILENGINEERING	
Time : $\mathbf{3}$ Hours	Maximum Marks : 70
Note: (i)	Attempt any seven questions.
(ii)	Non programmable calculators are allowed.

1. (a) Why is the study of errors important to a 5 Civil Engineer?
(b) Distinguish between round off errors and 5 truncation errors.
2. (a) Briefly explain the concept of convergence

5 in bisection method.
(b) Develop a computer algorithm for finding 5 roots of $f(x)=0$ using bisection method.
3. (a) Describe the fundamental difference between 'elimination approach' and 'iterative approach' in system of linear algebric equations.
(b) Solve the system :
$3 x_{1}+2 x_{2}+x_{3}=10$
$2 x_{1}+3 x_{2}+2 x_{3}=14$
$x_{1}+2 x_{2}+3 x_{3}=14$
by using LU decomposition method.
4. (a) What are eigenvalue problems ? 3
(b) Find the largest eigenvalue and the 7 corresponding eigenvector of the matrix.

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

using the power method.
5. (a) Write the principle of 'Linear Interpolation'. 3
(b) The table gives square roots for integers. 7

x	1	2	3	4	5
$f(x)$	1	1.4142	1.7321	2	2.2361

Find the square root of 2.5 using the second order Langrange Interpolation method.
6. Evaluate the following integrals using Simpson's 1/3 rule.
(a) $\int_{-1}^{1} \mathrm{e}^{x} \cdot d x$
(b) $\int_{0}^{\pi} \sqrt{\sin x} d x$
7. (a) Use the Taylor's method to solve the following equation

$$
\begin{aligned}
& \frac{d y}{d x}=x^{2}+y^{2} \\
& \text { for } x=0.25 \text { and } 0.5, \text { given } y(0)=1
\end{aligned}
$$

(b) Explain Euler's method.
8. (a) Develop computer algorithm for 'Finite Difference' method.
(b) Given the equation :
$\frac{d^{2} y}{d x^{2}}=\mathrm{e}^{x^{2}}$ with $y(0)=0$

$$
y(1)=0
$$

estimate the values of $y(x)$ at $x=0.25,0.50$.
9. (a) Describe any two applications of optimization in Civil Engineering.
(b) List various search methods under 3 unconstrained minimization method.
(c) Write down the matrix form of Linear 3 Programming problem.
10. A company purchases all the parts of a ball bearing and assembles them. It is engaged in two types of bull bearings, A and B. The respective profits are Rs. 3 and Rs. 2 per ball bearing. Each of A type ball bearing takes twice as much time to assemble, as the type B. If all the ball bearings of type B only would be assembled, the company could make 100 per day. The supply of ball bearing races is sufficient for 80 ball bearings (both A and B combined). For a A type, the supply rate of balls is such that only 40 could be made each day and for B such that only 70 could be made each day.
Formulate the linear programming equations for profit maximization.

