B. TECH. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination
June, 2014

BICE-011: STRUCTURAL ANALYSIS - II

Time : 3 hours
Maximum Marks : 70
Note: (i) Answer any seven questions.
(ii) All questions carry equal marks.
(iii) Assume missing data if any. Use of calculator is permitted.

1. A cantilever of length $2 a$ is carrying a load of " W " $\mathbf{1 0}$ at the free end, and another load " W " at its centre as shown below. Determine the slope and deflection of the cantilever at the free end shown in figure-1.

Fig. 1
2. A cantilever of 2 m span carries a triangular load of zero intensity at the free end, and $10 \mathrm{t} / \mathrm{m}$ at the fixed end. Determine the slope and deflection at the free end. Take $I=10,000 \mathrm{~cm}^{4}$, $\mathrm{E}=2.0 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$.
3. A three hinged circular arch of span 21 m has a rise of 4 m . The arch is loaded with a point load of 8 t at a horizontal distance of 6 m from the left support. Determine the horizontal thrust, two reactions and bending moment under the load.
4. A parabolic arch, hinged at its springings, of span 36 m and rise 8 m is loaded as shown in figure -2 .

Determine the value of horizontal thrust as well as maximum positive and negative B.M over the arch.
5. A continuous beam ABC 10 m long rests on supports A, B and C at the same level and is loaded as shown in figure -3 .

Fig. 3
Draw the B.M.D by moment distribution method.
6. Analyse the frame shown below by slope deflection method.

Fig. 4
7. A uniformly distributed load of $5 \mathrm{t} / \mathrm{m}$ of 6 m length crosses a simply supported girder of span 40 m from left to right. With the help of influence lines, determine the values of maximum S.F and B.M at a point 12 m from the left support.
8. Find the fixed end moment of the beam shown in 10 figure-5.

Fig. 5
9. Write short notes on any two of the following :
(a) Slope deflection method
(b) Virtual work method
(c) Strain energy

