00014

BAS-017

B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination

June, 2014

BAS-017 : FLIGHT MECHANICS

Time : 3 Hours			Maximum Marks : 70	
Note	:	Q.No. 1 is compulsory . from the remaining seven calculator is permitted .		•••
1.	W (a) (b) (c)	Service and Absolute	Ũ	8x2.5=20

- (d) Dihedral Effect
- (e) Static and Dynamic Stability
- (f) Dutch Roll
- (g) Weathercock Stability
- (h) Critical Velocity (V-n diagram)
- Draw the V-n diagram and explain it in detail. 10 Also explain structural and aerodynamic boundary.
- Discuss, in detail the determination of neutral and 10 maneuver point from flight test.
- Explain minimum drag speed and minimum 10 power speed and their importance in aircraft performance analysis.

BAS-017

- 5. Explain the following in brief
 - (a) Aileron reversal
 - (b) Adverse yaw
- 6. An aircraft weighing 250000 N has a wing area 10 of 80 m² and its drag equation is C_D = 0.016 + 0.04 C_L². Calculate
 (a) Minimum thrust required (T_{min})
 (b) Minimum power required (P_{min}) for straight

and level flight and the corresponding true air speeds (V_{md} and V_{mp}) at sea level and at an altitude where (σ)^{1/2}=0.58. Assume sea level air density to be 1.226 kg/m³.

- 7. Discuss briefly the following :5+5
 - (a) Basic requirements of the rudder
 - (b) Phugoid Motion
- Explain, in detail the contribution of various 10 components of the airplane to static directional stability.

5+5