No. of Printed Pages: 3

BAS-015

00974

B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination June, 2014

BAS-015: AERODYNAMICS - II

Time	: 3 H	lours Maximum Marks	s : 70
Note		ttempt any seven questions. All questions carry e arks. Use of secientific calculator is permitted .	equal
1.	(a) (b)	Derive an expression for induced drag co-efficient and induced angle of attack of a finite wing for elliptical lift distribution. Differentiate between finite and infinite wing with suitable sketch and plot.	5+5
2.	(a) (b)	Why a Golf ball is dimpled ? What is Helmholtz's theorem ?	5+5
3.	(a) (b)	Describe in brief the expansion Hodograph. Explain the formation of wing-tip vertices.	5+5
4.	(a) (b)	What is a detached shock wave? When it is formed? How laminar flow airfoil geometry is different from a conventional airfoil?	5+5
5.	(a) (b)	Explain briefly the procedure to be followed for analysis of a supersonic nozzle using method of characteristics. Discuss in brief the optimum, under - expanded and over - expanded convergent divergent nozzles.	5+5

6. A nozzle is a device for increasing the velocity of a steady flowring stream. At the inlet to a certain nozzle, the enthalpy of the fluid passing is 3000 kJ/kg and the velocity is 60 m/s. At the discharge end, the enthalpy is 2762 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it.

10

- (a) Find the velocity at exit from the nozzle.
- (b) If the inlet area is 0.1 m² and the specific volume at inlet is 0.187 m³/kg, find the mass flow rate.
- (c) If the specific volume at the nozzle exit is $0.498 \text{ m}^3/\text{kg}$, find the exit area of the nozzle.
- 7. (a) Show that the sonic velocity in an ideal gas 5+5 depends on the temperature and the nature of the gas.
 - (b) What is a shock? Where does it occur in a nozzle?
- 8. Show that for an ideal gas the fractional change in pressure across a small pressure pulse is given by:

$$\frac{\mathrm{dp}}{\mathrm{p}} = \gamma \; \frac{\mathrm{dV}}{\mathrm{C}}$$

and that the fractional change in absolute temperature is given by :

$$. \quad \frac{dT}{T} = (\gamma - 1) \, \, \frac{dV}{C}$$

where symbols carry usual meaning.

- 9. (a) Discuss in brief the forces on an Airfoil. 5+5
 - (b) Explain Lifting Line theory of Prandtl.

10. (a) Describe Area-velocity Relations in 5+5 One-Dimensional Isentropic flow. Also prove that

$$\frac{dA}{A} = \left(M^2 - 1\right) \frac{dV}{V}$$

where symbols carry usual meaning.

- (b) Define the following:
 - (i) Laminar Boundary Layer
 - (ii) Boundary Layer Thickness
 - (iii) Laminar Sub-layer
 - (iv) Skin Friction
 - (v) Turbulent Boundary Layer