B. TECH. (AEROSPACE ENGINEERING)

(BTAE)
Term-End Examination
June, 2014

BAS-014 : AIRCRAFT STRUCTURES

Time : 3 hours
Maximum Marks: 70
Note : Question 1 is compulsory. Attempt any 9 questions from the remaining questions.

1. Write short notes on any two of the following :
(a) Slenderness ratio $3^{1 / 2}+3^{1 / 2}$
(b) Brittle Lacquer
(c) Limit load factor
(d) Shafts connected in series
2. A beam of length 5 m and of uniform rectangular 7 cross section is simply supported at its ends. It carries a UDL of $9 \mathrm{kN} / \mathrm{m}$ over the entire length. Calculate the width and depth of the beam if permissible bending stress is $7 \mathrm{~N} / \mathrm{mm}^{2}$ and central deflection is not to exceed 1 cm .
$\mathrm{E}=1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
3. A beam of uniform rectangular section $200 \mathrm{~mm} 4+3$ wide and 300 mm deep is simply supported at its ends. It carries a UDL of $9 \mathrm{kN} / \mathrm{m}$ run over the entire span of $5 \mathrm{~m} . \mathrm{E}=1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$. Find :
(a) slope at the supports.
(b) maximum deflection.
4. Determine the slope and deflection of the free end of a cantilever beam of length 3 m which is carrying a UDL of $10 \mathrm{kN} / \mathrm{m}$ over a length of 2 m from the fixed end. $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, $\mathrm{I}=10^{8} \mathrm{~mm}^{4}$.
5. Explain briefly the salient features of V-n diagram with a neat sketch.
6. Explain the assumptions made in determining the 7 shear stress induced in a circular shaft when subjected to torsion.
7. A hollow shaft of external diameter 120 mm transmits 300 kW power at 200 rpm . Determine the maximum internal diameter if the maximum stress in the shaft is not to exceed $60 \mathrm{~N} / \mathrm{mm}^{2}$.
8. Derive the expression for circumferential and 7 longitudinal stresses induced in a thin cylinder subjected to internal pressure.
9. Find the thickness of metal necessary for a steel 7 cylindrical shell of internal diameter 150 mm to withstand an internal pressure of $50 \mathrm{~N} / \mathrm{mm}^{2}$. The maximum hoop stress in the section is not to exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
10. Derive an expression for the crippling load for a
long column when both the ends of the column
are hinged.
11. Calculate the critical load for a strut which is made of a bar circular in section and 5 m long and which is pinjointed at both ends. The same bar when freely supported gives a midspan deflection of 10 mm under a load of 80 N at the centre.
12. Explain the working principle of any one strain
gauge in detail.
