~7

 \sim

B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination

June, 2014

BAS-008 : STRENGTH OF MATERIALS

Time : 3	B Hours	Maximum Marks : 70
Note :	(i)	Answer any five questions.
	(ii)	All questions carry equal marks.
	(iii)	Use of (Non - Programmable, scientific
		calculator) calculator is permitted. Assume
		any missing data if required.

- 1. Calculate the modulus of rigidity and bulk 14 modulus of a cylindrical bar of diameter 30 mm and length 1.5 m, if the longitudinal strain in bar during a tensile stress is four times the lateral strain. Find change in volume, when bar is subjected to a hydrostatic pressure of 100 N/mm^2 . Take $\text{E} = 1 \times 10^5 \text{ N/mm}^2$.
- At a point in a strained material, the principle stresses are 100 N/mm² tensile and 40 N/mm² compressive. Determine the resultant stress in magnitude and direction on a plane inclined at 60° to the axis of the major principle stress. What is the maximum intensity of shear stress in the material at the point on the plane ?

- A bolt is acted upon by an axial pull of 16 kN 14 along with a transverse shear force of 10 kN. Determine the diameter of the bolt required according to following theories of failure :
 - (a) Maximum shear stress theory
 - (b) Maximum principle strain theory
 - (c) Maximum strain energy theory
 - (d) Maximum shear strain energy theory

(e) Maximum principle stress theory Take Elastic limit of bolt to be 250 MPa, Factor of

safety as 2.5 and poisson's ratio is 0.3.

4. A beam 10 m long and simply supported at each end, has a uniformly distributed load of 1000 N/m, extending from left end upto the centre of beam. There is also an anticlock wise couple of 15 kNm at a distance of 2.5 m from the right end (as shown in fig 1) Draw S.F(shear force) and Bending moment diagrams.

- 5. (a) A timber beam of rectangular section is to support a load of 20 kN/m uniformly distributed over a span of 3.6 m when beam is simply supported. If depth of section is to be twice the breadth, and the stress in timber is not to exceed 7 N/mm², find dimension of the cross section for the beam.
 - (b) How would you modify the cross section of beam in 5(a), if it carries a concentrated load of 20 kN placed at centre with the same ratio of breadth to depth ?

7

BAS-008

- 6. Using the castigliano's theorem, determine 14 deflection and the slope at the free end of a cantilever with uniformly distributed load on the whole span.
- 7. Establish relationship to find the shear stress across
 - (a) An I Section 7 (b) A circular Section 7
 - (b) A circular Section
 - What is the maximum value in each case ?
- 8. (a) Deduce the relation for stress in case of shock 4 load.
 - (b) A 1 meter long bar of rectangular 10 cross - section 50 mm x 80 mm is subjected to an axial load of 1.2 kN. Determine the maximum stress and strain energy developed in bar if the load is applied :
 - (i) Gradually
 - (ii) Suddenly
 - (iii) Falls through a height of 25 mm.(E = 205 Gpa)

BAS-008

3