B.Sc. (NAUTICAL SCIENCE)

Term-End Examination

June, 2014

BNA-011 : APPLIED MATHEMATICS

Time : $\mathbf{2}$ hours
Maximum Marks : 70
Note: (i) Attempt any five questions.
(ii) Use of scientific calculator is allowed.

1. (a) If $\overline{\mathrm{a}}=6 \hat{i}-\hat{j}+7 \hat{k}$ and $\overline{\mathrm{b}}=2 \hat{i}-\hat{j}+\lambda \hat{k}$ find the 7 value of λ such that $(\bar{a}+\bar{b})$ and $(\bar{a}-\bar{b})$ are orthogonal vectors.
(b) Find $\int_{0}^{20} f(x) \mathrm{d} x$, where $f(x)$ is given by the 7
following table, using Simpson's one-third rule.

$x:$	0	2	4	6	8	10	12	14	16	18	20
$f(x):$	0	10	18	25	29	32	20	11	5	2	0

2. (a) The probability that a fire accident due to 7 short circuit is 0.8 and due to the LPG cylinder explosion is 0.2 . Chance of fire accident is 30% given a short circuit and 95% given on LPG explosion. Based on these, what do you think is the most probable cause of fire? Statistically justify your answer.
(b) Find the mean and standard deviation of the following data :

x	$132-136$	$136-140$	$140-144$	$144-148$	$148-152$
f	5	6	27	8	4

3. (a) If $y=x^{x}+(\sin x)^{x}$ find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b) If $x=a \cos t, y=a \sin t$ find $\frac{\mathrm{d}^{2} y}{\mathrm{~d}^{2}}$ at $t=\frac{\pi}{4}$.
4. (a) Evaluate $\int \frac{x+27}{x^{2}-9} \mathrm{~d} x$ 7
(b) Using integration find the area of the region bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.
5. (a) In a spherical triangle LMN angles L and M
are 90° and $44^{\circ} 16.0^{\prime}$ and the side m is $39^{\circ} 37^{\prime}$. Calculate side n.
(b) In a quadrantal spherical triangle PZX $\mathrm{P}=90^{\circ}, x=64^{\circ}$ and $\mathrm{Z}=90^{\circ}$. Calculate X . 7
6. (a) Find the equation of ellipse if the length of 7 latus rectum is $\frac{5}{2}$ and $\mathrm{e}=\frac{1}{2}$.
(b) Find the equation of the circle passing 7 through the points $(-2,1)$ and $(1,-2)$ and having the center on the line $x+y+z=0$.
