BNA-011

B.Sc. (NAUTICAL SCIENCE)

Term-End Examination

June, 2014

BNA-011 : APPLIED MATHEMATICS

Time : 2 hours						Maximum Marks : 70							
Note	:: (i) (ii)	Att) Use	temp e of s	t an scien	y fiu tific	ve qu calci	uesti ulato	ons. or is	allo	wea	l.		
1.	(a)	If a= valu are ($=6\hat{i}$ e of orthe	$-\hat{j} + \lambda s$	$-7\hat{k}$ uch nal x	and that vecto	$\overline{b} = (\overline{a})$	2 <i>î</i> - + b	\hat{j} + \hat{j}	$\lambda \hat{k}$ f	ind a –	the Б)	7
	(b)	Find follo	\int_{0}^{20}	f(x)g ta	dx, ble,	wł usir	nere ng Si	<i>f</i> (x) imp	is g son'	iven s or	by e-th	the ird	7
	$\frac{x}{f(x)}$: 0 : 0	2 10	4 18	6 25	8 29	10 32	12 20	14 11	16 5	18 2	20 0	
2.	(a)	The shor cylir accid 95% thes prob	prol t ci dert dent giv e, v able	babi rcui exj is 3 en vha cau	lity t is plos 30% on I t do ise o	that 0.8 ion giv LPG yo of fir	a fi and is 0 en a exp ou t re?	ire a 1 du 2.2. (2.1 she 2.1 she 2.1 she 2.1 she 1.1 she 2.1	accid te to Char ort o ion. k is tistic	lent o th nce circu Bas the cally	due le L of f uit a sed e m just	e to PG fire and on ost tify	7

BNA-011

your answer.

(b) Find the mean and standard deviation of 7 the following data :

x	132 -136	136 -140	140 -144	144 -148	148 -152
f	5	6	27	8	4

3. (a) If
$$y = x^x + (\sin x)^x$$
 find $\frac{dy}{dx}$ 7

(b) If
$$x = a \operatorname{cost}$$
, $y = a \operatorname{sint} \operatorname{find} \frac{d^2 y}{dx^2}$ at $t = \frac{\pi}{4}$. 7

4. (a) Evaluate
$$\int \frac{x+27}{x^2-9} \, \mathrm{d}x$$
 7

(b) Using integration find the area of the region bounded by the curve $x^2 = 4y$ and the line x = 4y - 2.

7

(b) In a quadrantal spherical triangle PZX
$$P=90^\circ$$
, $x=64^\circ$ and $Z=90^\circ$. Calculate X. 7

6. (a) Find the equation of ellipse if the length of 7
latus rectum is
$$\frac{5}{2}$$
 and $e = \frac{1}{2}$.

(b) Find the equation of the circle passing 7 through the points (-2, 1) and (1, -2) and having the center on the line x + y + z = 0.

BNA-011