6		MCA (Revised)	
$\frac{1}{8}$	Term-End Examination		
60		June, 2014	
MCSE-003 : ARTIFICIAL INTELLIGENCE AND KNOWLEDGE MANAGEMENT			
Time : 3 hours		ours Maximum Marks	100
Not	te:Q q	Question number 1 is compulsory . Attempt any t uestions from the rest.	three
1.	(a)	Transform the following into Conjunctive Normal Form (CNF) : $\sim (C \rightarrow D) \lor (C \land D)$	5
	(b)	Determine the output on execution of the function given below, when $n = 5$. Write the intermediate results of each step while calculating the result also. (defun func (n) (cond ((zerop n) -1) (t (*(-0 n) func (-n 1))))))	5
	(c)	Give conceptual dependency representation of the sentence given as follows : "Mohan will eat Dosa from the plate with fork and knife"	5
	(d)	With the help of a suitable example, describe the "member" function of PROLOG. How the same can be used to perform recursive search of a data in a list ?	5

MCSE-003

P.T.O.

(e) Transform the following formula into Prenex Normal form.

$$(\forall_x) (\forall_y) ((\exists_z) Q(x, y, z) \land ((\exists_u) R(x, u))$$

5

 $\rightarrow (\exists_v) R(y, v)))$

- (f) Briefly discuss, the "Turing Test" along with 5 its significance.
- (g) Transform the following conceptual graph 5 into FOPL statement :

(Instrument Glass)

- (h) What are Agents ? Briefly discuss the 5 properties of agents.
- **2.** (a) Discuss Truth Maintainence System (TMS), **4** with the help of a suitable diagram.
 - (b) Under what conditions would it make 6 sense to use both forward and backward chaining? Give an example where both of these are used.
 - (c) Explain the term "Knowledge" with respect 10 to a Knowledge Base System. How "Knowledge" differs from "Intelligence" ? Distinguish between procedural and declarative knowledge, while citing an example for each.

MCSE-003 ·

- Write short notes on the following : 3. (a) 10 AO* Algorithm (i) (ii) Reasoning techniques and its types (b) Explain any two of the following logic 5 concepts, using suitable examples : (i) Modus Tollens Satisfiable statement (ii) (iii) Resolution principle in proposition logic (c) Machines can be made intelligent artificially 5 but ultimately persons make the machines. So, who is more intelligent - the artificial machine or the person ? Justify your answer. 4. (a) Briefly discuss Data Structures and Data 5 Values in LISP. (b) Briefly discuss "Default Reasoning Systems" 5 as a mechanism of handling incompleteness of a Knowledge Base. What is an Expert System ? Explain the 10 (c) architecture of Expert System. Create an Expert System to infer whether a student has secured excellent, good, average or poor marks in his/her exams. Compare and contrast precisely the 5. (a) 10 following pair of terms : (i) BFS and Heuristic Search (ii) Conceptual graph and Conceptual
 - Dependency
 - (iii) Associative Network and Semantic Network
 - (iv) Abductive inference and Analogical inference
 - (v) Knowledge and information

MCSE-003

(b) Write DFS algorithm and use it, to search 10 the Goal node in the tree given as follows :

MCSE-003